
Towards a Dimension-Free Understanding of Adaptive Linear
Control

Juan C. Perdomo
jcperdomo@berkeley.edu

University of California, Berkeley

Max Simchowitz
msimchow@berkeley.edu

University of California, Berkeley

Alekh Agarwal
alekha@microsoft.com

Microsoft Research

Peter Bartlett
peter@berkeley.edu

University of California, Berkeley

March 18, 2021

Abstract

We study the problem of adaptive control of the linear quadratic regulator for systems in very high, or
even infinite dimension. We demonstrate that while sublinear regret requires finite dimensional inputs,
the ambient state dimension of the system need not be bounded in order to perform online control. We
provide the first regret bounds for LQR which hold for infinite dimensional systems, replacing dependence
on ambient dimension with more natural notions of problem complexity. Our guarantees arise from a
novel perturbation bound for certainty equivalence which scales with the prediction error in estimating
the system parameters, without requiring consistent parameter recovery in more stringent measures like
the operator norm. When specialized to finite dimensional settings, our bounds recover near optimal
dimension and time horizon dependence.

1 Introduction
Reinforcement learning (RL) has matured considerably in recent years, setting its sights on increasingly
ambitious tasks in ever more complex environments. With this increased complexity, it is neither possible
nor desirable to learn models of the environment that are uniformly accurate across all possible states. In
particular, to scale learning methods to complex sensorimotor state observations, it is critical to focus model
estimation on the parts of the state space that are most relevant to the cost and which can be influenced by the
available control actions. This paper investigates the possibility of meeting this challenge in high-dimensional
control tasks. We study the problem of learning the optimal Linear Quadratic Regulator (LQR) where the
states live in a potentially infinite dimensional Reproducing Kernel Hilbert Space (RKHS), a linear control
problem in which the dynamics, optimal value function, and optimal control policy are infinite dimensional,
and therefore cannot be efficiently estimated to uniform precision. We focus on the regret setting, known
as online LQR, in which a learner faces an unknown linear dynamical system and must adaptively tune a
control policy to compete with the optimal policy.

Recent work has studied the statistical complexity of finite-dimensional LQRs at length (both in online
and batch settings) [Dean et al., 2019, 2018, Mania et al., 2019, Faradonbeh et al., 2018, Simchowitz and
Foster, 2020, Fazel et al., 2018, Tu and Recht, 2019]. However, all known results scale explicitly with the
ambient dimension of the state space, which is infinite in our setting. In this work, we develop more fine-
grained complexity measures to understand the hardness of linear control. While our measures are always
crudely bounded by the state dimension, they behave more like an intrinsic dimension that adapts to the
problem structure. Hence, they can be well-defined in many infinite dimensional RKHS settings as well,
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where they depend most strongly on the decay of the spectrum of the noise covariance. Such complexity
measures based on intrinsic dimension are well-understood in supervised learning, and have been extended
recently to the bandit and discrete action RL settings. Extending these ideas to continuous control is more
challenging as several aspects of existing theory critically leverage the estimation of system parameters in
operator norm, which necessitates an explicit dimension dependence. This motivates the following question:

Is it possible to obtain dimension-free sample complexity and regret guarantees in continuous
control? What is the right measure of complexity?

We answer the first question in the affirmative and show that the spectral properties of the noise co-
variance, such as its trace and eigenvalue decay, provide a much sharper characterization of the problem
complexity than the state dimension in many parameter regimes.

1.1 Problem Setting & Background
We consider the problem of adaptive control of the linear quadratic regulator, or online LQR. To enable
dimension-free results, we assume that the states xt lie in a Hilbert space Hx. While states xt are potentially
infinite-dimensional, as shown in Theorem 1.1, it is necessary to assume the inputs du ∈ Rdu are finite
dimensional in order to guarantee sublinear regret. Given an arbitrary linear operator X : H1 → H2

between Hilbert spaces, we let ‖X‖op, ‖X‖HS, ‖X‖tr denote its operator, Hilbert-Schmidt (HS), and trace
norms. These norms may be infinite in general, and we say X is bounded, Hilbert Schmidt, or trace class
if the corresponding norm is finite. We let XH (resp. xH) denote adjoints of operators (resp. vectors) and
x⊗ x denote outer products. The dynamics evolve according to:

xt+1 = A?xt +B?ut + wt, wt
i.i.d∼ N (0,Σw), (1.1)

where A? : Hx → Hx and B? : Rdu → Hx are bounded linear operators, and Σw is trace class (i.e.
tr [Σw] = E‖wt‖2 < ∞), self-adjoint, and PSD.1 In LQR, the goal is to select a policy that minimizes
cumulative quadratic losses 〈xt, Qxt〉+〈ut, Rut〉, where Q,R are bounded, positive-definite operators. Given
a bounded linear operator K : Hx → Rdu , the infinite-horizon cost of the static feedback law ut = Kxt is

J (K) := lim
T→∞

1

T
E
[∑T

t=1 〈xt, Qxt〉+ 〈ut, Rut〉
]
, subject to ut = Kxt. (1.2)

We assume that (A?, B?) is stabilizable, meaning there exists a controller K such that J (K) is finite, which
is true if and only if the spectral radius ρ(A? + B?K) := lim supi→∞ ‖(A? + B?K)i‖1/iop < 1. We define the
optimal control policy K? := infK:Hx→Rdu J (K). Under general conditions, K? is unique, does not depend
on the noise covariance Σw, and its induced feedback law attains the optimal infinite horizon cost over all
control policies. In the online LQR protocol, the system matrices (A?, B?) are unknown, and the learner’s
goal is to adaptively learn to control the system so as attain low regret. We define the regret of a learning
algorithm A (which chooses actions ut based on the history of previous states and actions) as

RegretT (A) :=
(∑T

t=1 〈xt, Qxt〉+ 〈ut, Rut〉
)
− TJ?, J? := J (K?). (1.3)

While we are not aware of other work which studies online control of LQR for infinite dimensional systems,
this model has a long and rich history within the control theory community dating back at least to the 1970s
(see for example Curtain and Zwart [2012], Bensoussan et al. [2007], and the references therein).

Dimension-Free Problem Parameter and Asymptotic Notation A central object in the analysis of
LQR is the solution to a discrete algebraic Ricatti equation (DARE) P? (see Eq. (2.1)), which represents the
value function for the optimal controller (see Appendix A.4 for further details). The bounds in our setting

1The choice of Gaussian noise wt is made for simplicity, our analysis can be easily extended to work for any stochastic,
sub-Gaussian distribution.
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are parameterized by the operator norms of P?, the system matrices (A?, B?), and the noise covariance
Σw. These terms are considered dimension-free in prior literature (e.g. Mania et al. [2019], Simchowitz and
Foster [2020]), and indeed do not scale with the dimension when the state dimension is finite. We define the
quantity M? as a uniform bound on these dimension free system parameters.

M? := max{‖A?‖2op , ‖B?‖
2
op , ‖P?‖op , ‖Σw‖op , 1} (1.4)

We use a . b to denote that a ≤ c ·b, where c is a universal constant independent of any problem parameters.
We let log+(x) := max{log(x), 1} For a time horizon T , we use Õ(f(T )) to denote a term that, for T
sufficiently large, is bounded by f(T ) times logarithmic factors in relevant problem parameters. We define
a weaker asymptotic notation O?(f(T )) to denote a term bounded by f(T )1+o(1), times logarithmic factors,
where o(1)→ 0 as T →∞.

1.2 The Challenges of Dimension-Free Linear Control
Though there is now a mature theory of dimension-free learning rates in prediction and online decision
making [Bartlett and Mendelson, 2002, Zhang, 2005, Srinivas et al., 2010, Rakhlin and Sridharan, 2014],
dimension-free rates in reinforcement learning have remained more elusive. This is because a learned model
of transition dynamics that is accurate under one policy may be highly inaccurate on states visited under
another policy.

Addressing policy mismatch in learning requires some handle on the complexity of the class of state
distributions that a learner can encounter under available policies. Numerous strategies have been proposed,
via both combinatorial quantities like Eluder Dimension [Russo and Van Roy, 2013] and linear-algebraic
notions such as Bellman Rank [Jiang et al., 2017]. Targeting dimension-free rates more specifically, recent
work has studied MDPs with linear transitions, where the parameters lie in an RKHS [Yang et al., 2020b,
Yang and Wang, 2020, Agarwal et al., 2020]. These developments assume that the dynamics can be factorized
as the inner product of two vectors that have bounded RKHS norm. The dynamical matrices that arise in
LQR, however, are considerably richer objects: bounded operators on the RKHS, rather than mere elements
of it, and this leads to fundamental differences between the settings. In a similar vein, Kakade et al.
[2020] consider a nonlinear dynamical model with kernelized dynamics, finite-dimensional state, and well-
conditioned Gaussian noise. Their setting is in general incomparable to ours, yet in the finite-dimensional
LQR setting in which we overlap, our techniques yield more refined bounds. See the discussion following
Theorem 3.2 for further comparison.

It is not obvious that dimension-free learning in LQR is even possible. In fact, we show that the worst-case
regret necessarily scales with the ambient input dimension:

Theorem 1.1. (informal) Fix any integer rx ≥ 1, and input dimension du. Consider identity costs
Q = IHx , R = Idu , and noise covariance Σw with trace tr [Σw] ≤ rx. Then, there exists a family of
stabilizable instances (A,B) with Hilbert-Schmidt norm bounded by 2 such that any algorithm must suffer
Ω(T ) regret for T ≤ rxd2

u, and Ω(
√
Trxd2

u) regret thereafter.

The formal statement of the lower bound, its proof, and further discussion are given in Appendix H.
Notably, the above theorem stands in stark contrast to analogous results for linear MDPs and those presented
in Kakade et al. [2020], which apply to infinite dimensional inputs.

Addressing high-dimensional states in LQR has posed a challenge in both theory and practice [Sagaut,
2006, Liu and Vandenberghe, 2010]. All relevant prior work has incurred a dependence on the ambient state
dimension. Model-based methods, which estimate system parameters and propose a policy based on those
estimates, have required consistent recovery of those parameters (say, in operator or Frobenius norm), which
is far stronger than a prediction error guarantee [Dean et al., 2018, 2019, Mania et al., 2019, Cohen et al.,
2019]. Model-free methods, which eschew learning the system parameters in favor of directly optimizing
the policy or value function, have been observed to suffer an even worse dependence on ambient dimension
[Tu and Recht, 2019]. To summarize, dimension-free statistical learning encounters major obstacles when
translated to linear control.
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1.3 Summary of Results
Certainty Equivalence Our results are based on certainty equivalence, [Theil, 1957, Simon, 1956], first
analyzed for the online LQR setting by Mania et al. [2019]. Given a stabilizable (A,B), we let K∞(A,B)
denote the optimal controller K, which minimizes the cost functional in Eq. (1.2) with (A?, B?) set to (A,B).
It is a well-known fact that K∞(A,B) has a closed form expression in terms of the system parameters (A,B)

and the DARE (see formal preliminaries in Section 2). Given estimates (Â, B̂) of (A?, B?), the certainty
equivalence controller is K̂ = K∞(Â, B̂); that is, the optimal control policy as if the true system were (Â, B̂).
To be well-posed, this controller requires (Â, B̂) to be stabilizable, which occurs when (Â, B̂) is sufficiently
close to (A?, B?) in operator norm (see, e.g., Proposition C.3).

A Regret Bound We analyze a simple explore-then-commit style algorithm, OnlineCE, based on certainty
equivalence, similar to that of Mania et al. [2019]. For now, we assume access to initial “warm-start” estimates
(A0, B0) whose distance from (A?, B?) in operator norm is a small constant. We show how to get rid of this
assumption later. The algorithm proceeds by first synthesizing an exploratory controller K0 = K∞(A0, B0,),
and then collecting Texp steps of samples with inputs ut = K0xt+vt, where vt is i.i.d. Gaussian noise injected
for exploration. In the second phase, the algorithms constructs refined estimates (Â, B̂) by performing ridge
regression on the collected data, synthesizes the certainty equivalence controller K̂ = K∞(Â, B̂), and selects
inputs ut = K̂xt for the remainder of the protocol.

In Theorem 3.1, we demonstrate that this relatively simple algorithm enjoys regret that scales polyno-
mially with the eigendecay of the noise covariance Σw, Hilbert-Schmidt norm of A?, input dimension du,
and the operator norms of relevant system operators. When specialized to common rates of eigendecay, we
attain the following regret bounds.

Theorem 3.2 (informal). Let σj be the eigenvalues of Σw. If the initial estimates (A0, B0) are sufficiently
close to (A?, B?), then OnlineCE suffers regret at most:

• (polynomial decay) O?(
√
CP d2

maxT
1+1/α), if σj = j−α for α > 1,

• (exponential decay) O?(
√
CP d2

maxduT ), if σj = exp(−αj) for α > 0.

• (finite dimension) Õ(
√
CP (du + dx)3T ) if Hx = Rdx .

In the above expressions, CP is a polynomial in M? and dmax := max{tr [Σw] , du,Wtr} where Wtr is slightly
larger than tr [Σw] + ‖B?‖2HS

Interestingly, this result shows that achieving dimension-free rates for online linear control does not
require new algorithmic ideas, but rather a refined analysis of classical ones, like certainty equivalence. In
particular, when specialized to finite dimension, our regret bound has the same dimension dependence as the
one of Mania et al. [2019]. Simchowitz and Foster [2020] show that this dependence is sharp in the regime
where state and input spaces have the same dimension. More generally, however, the spectrum of Σw is a
significantly sharper complexity measure as indicated before and evidenced in the following example.

An Illustrative Example Let (ei)
∞
i=1 be an orthonormal basis for Hx, (fi)

du
i=1 an orthonormal basis for

Rdu , and consider the following problem instance:

A? =
1

2

du∑
i=1

ei ⊗ ei +
∑
i>du

1

i2
· ei ⊗ ei, B? =

du∑
i=1

ei ⊗ fi, Σw =

∞∑
i=1

1

i2
· ei ⊗ ei,

where Q = IHx and R = Idu . In this example, A? is infinite-dimensional, yet only has a finite dimensional
controllable subspace. Therefore, in order to learn the optimal policy, it is not necessary for the learner to
estimate the whole system, but rather the parts of it that are relevant for control as determined by noise and
the controllability properties of A? and B?. While guarantees from previous work are vacuous in this setting
since the ambient system dimension is infinite, the example corresponds to α = 2 in case 1 of Theorem 3.2,
with dmax = O(du) and M? ≤ 1, yielding an O?(duT 3/4) regret bound based on our theory.
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Suboptimality Bounds from Prediction Error During the exploration phase, the OnlineCE algorithm
selects inputs according to ut = K0xt + vt. Let Σx,0 denote the stationary covariance over states induced
by this policy (see Eq. (2.3) for details). The ridge regression step in OnlineCE recovers B? in Hilbert-
Schmidt norm (since B? is finite rank), but recovers A? only in the covariance-weighted Hilbert-Schmidt
norm ‖(A? − Â)Σ

1/2
x,0‖HS, corresponding to the prediction error. The key technical innovation in this paper

that underlies all of our results is a perturbation bound on the suboptimality of the certainty equivalence
controller K̂ in terms of this prediction error.

Theorem 2.1 (informal). Let K0 be any state-feedback controller that stabilizes (A?, B?), and let Σx,0

denote the induced state covariance with σ2
u = 1. Then, if (Â, B̂) are within a small but constant operator

norm error of (A?, B?),

J (K̂)− J? ≤ CJ · (εcov)2−o(1), where εcov := max
{
‖(Â−A?)Σ1/2

x,0‖HS, ‖B̂ −B?‖HS
}
.

Here, CJ is a polynomial in M? and o(1) denotes a term that tends to 0 as εcov → 0.

Importantly, a ε2
cov scaling of the perturbation is known to be optimal [Mania et al., 2019], and in finite

dimensions, the o(1) term in the exponent of our bound can be discarded.

Alignment Condition As stated, the regret guarantee guarantee for OnlineCE requires access to a warm-
start estimates (A0, B0). We use this to perform a projection step ensuring that the certainty equivalent
controller K̂ is stabilizing. While this condition is stronger than those that have previously appeared in the
literature, which typically assume that the learner initially has access to an arbitrary stabilizing controller
Kinit, we show that, under a certain alignment condition, it is possible to achieve this warm start condition:

Proposition 3.1 (informal). Under a certain alignment condition, which holds if all eigenvalues of Σw

are strictly positive (though decaying to zero, see Assumption 3), after collecting O(1) many samples, ridge
regression returns estimates (A0, B0) of (A?, B?) satisfying the requisite closeness condition for Theorem 3.1.

One can stitch together an initial estimation phase described by the theorem above with the analysis of
OnlineCE to provide an algorithm that dispenses with the access to warm-start estimates, yet this requires the
above alignment condition. Crucially, we use this condition for coarse recovery up to a constant tolerance.
Hence, the initial estimation phase adds only a constant burn-in to the regret. Importantly, the alignment
condition does not afford us consistent parameter recovery.

1.4 Related Work
In the interest of brevity, we provide an abridged discussion of related work here, and defer an extended
discussion to Appendix A.2. The learning community has seen a surge in interest in linear control and
in system identification [Vidyasagar and Karandikar, 2006, Hardt et al., 2018, Pereira et al., 2010, Oymak
and Ozay, 2019, Simchowitz et al., 2018, Sarkar and Rakhlin, 2019, Dean et al., 2019]. We consider the
online LQR setting first proposed by Abbasi-Yadkori and Szepesvári [2011], and subsequently studied by
Faradonbeh et al. [2018], Cohen et al. [2019], Dean et al. [2018], Mania et al. [2019], Abeille and Lazaric
[2020], Simchowitz et al. [2020]. Our work is based on the analysis of certainty equivalence for online control,
first studied by Mania et al. [2019] and refined by Simchowitz and Foster [2020]. Concurrent work has also
studied model-free approaches for control [Fazel et al., 2018, Krauth et al., 2019, Abbasi-Yadkori et al., 2019,
Tu and Recht, 2019]. As noted, all analyses incur dependence on ambient system dimension.

Sample complexity guarantees depending on instrinsic measures of complexity (rather than ambient
dimension) are well-known in supervised learning [Bartlett and Mendelson, 2002, Zhang, 2005] and bandit
problems [Srinivas et al., 2010]. More recently, these results have been extended to the reinforcement learning
literature as well, for a class of problems defined as linear MDPs [Jin et al., 2020, Agarwal et al., 2020, Yang
et al., 2020a]. Further discussion comparing the linear MDP regime to LQR is deferred to Appendix A.2.

5



2 From Prediction Error Bounds to Controller Suboptimality
In this section, we establish the main perturbation bounds regarding the suboptimality of a certainty-
equivalent controller K̂ = K∞(Â, B̂) given estimates (Â, B̂) that satisfy a prediction error bound under a
particular exploratory distribution. In doing so, we highlight a key change of measure lemma that allows
us to evaluate the behavior of the system under any state-feedback law given only a prediction error bound
under a single exploratory policy. We begin by stating some further preliminaries.

Formal Preliminaries As in finite-dimensional settings, the optimal controller K∞(A,B) for LQR in
infinite dimension can be computed in terms of the PSD operator P∞(A,B) : Hx → Hx which solves the
Discrete Algebraic Riccati Equation (DARE),2

P∞(A,B) solves P = AHPA−AHPB(R+BHPB)−1BHPA+Q. (2.1)

K∞(A,B) := −(R+BHPB)−1BHPA, where P = P∞(A,B) (2.2)

We define P? := P∞(A?, B?) and recall K? := K∞(A?, B?).
The DARE is intimately related to the discrete Lyapunov operator, dlyap. Given a bounded linear

operator A : Hx → Hx that is stable (i.e. ρ(A) < 1), and a symmetric bounded operator Λ : Hx → Hx,
dlyap (A, Λ) denotes the solution to the equation X = AHXA + Λ. A classic result in Lyapunov theory
states that the solution X is unique, and is given by dlyap (A, Λ) =

∑∞
j=0(AH)jΛAj . For any controller K

such that K is stabilizing for (A,B) we define P∞(K;A,B) := dlyap
(
A+BK, Q+KHRK

)
, which can be

viewed as the value function induced by the controller K (see Appendix A.4 for details). Two consequences
of this interpretation are that P∞(K;A,B) = P∞(A,B) for K = K∞(A,B), and P∞(A,B) � P∞(K ′;A,B)
for any other stabilizing controller K ′.

We adopt the following notation to refer to the steady-state covariance operator for the true system
(A?, B?), where ut is chosen by combining a state feedback policy K with isotropic Gaussian noise vt:

Σ?(K,σ
2
u) := lim

t→∞
E[xt ⊗ xt], s.t. xt+1 = A?xt +B?ut + wt,

where ut = Kxt + vt, wt
i.i.d∼ N (0,Σw),vt

i.i.d∼ N (0, σ2
uI). (2.3)

We let Σ?(K) = Σ?(K, 0). A short calculation reveals that,

Σ?(K,σ
2
u) = dlyap

(
(A? +B?K)H, Σw + σ2

uB?B
H
?

)
.

Lastly, for the remainder of the presentation, we make the following assumption on the costs:

Assumption 1. The cost operators Q,R satisfy Q,R � I.

Since scaling both Q and R by a constant does not change the form of the optimal controller, this
assumption is without loss of generality if the operators are already positive definite.

2.1 Performance Difference and Change of Measure
The suboptimality of a controller K for an instance (A?, B?) admits the following closed form, often referred
to as the performance-difference lemma [Fazel et al., 2018]:

J (K)− J (K?) = tr
[
(R+BH

? P?B?)
> · (K −K?)Σ?(K)(K −K?)

H
]

≤
∥∥R+BH

? P?B?
∥∥

op
‖(K −K?)Σ?(K)

1
2 ‖2HS. (2.4)

Hence, the correct geometry in which K should approximate K? is in the HS norm, weighted by its steady-
state covariances Σ?(K). Weighting by the Σ?(K)

1
2 is crucial for dimension-free bounds since recovery of

K? in the unweighted HS norm would incur dependence on ambient dimension.
2See for example Zabczyk [1974, 1975], Lee et al. [1972], Curtain and Zwart [2012].
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One could achieve low error in the Σ?(K)
1
2 -weighted norm if one already had access to samples with

covariance Σ?(K), but this logic becomes circular. Instead, we ensure that ‖(K − K?)Σ
1/2
x,0‖2HS is small,

where Σx,0 = Σ?(K0, σ
2
u) is the state covariance under an arbitrary stabilizing controller K0 and some

additional Gaussian excitation. Our first technical contribution shows that, up to constant factors, the
exploratory covariance Σx,0 dominates the target Σ?(K):

Lemma 2.1. Let K be any stabilizing controller for (A?, B?) and let Σ?(K) be its induced state covariance.
Then, for any stabilizing controller K0 and any variance σ2

u ≥ 1, we have that Σx,0 = Σ?(K0, σ
2
u) satisfies

Σ?(K) � CK,σ2
u
· Σx,0,

where CK,σ2
u

= max

{
2, 128

σ2
u
‖Σw‖op ‖K −K0‖2op ‖PK‖

3
op log

(
3 ‖PK‖op

)2
}

for PK = P∞(K;A?, B?).

Hence, it suffices to replace the performance difference bound in Eq. (2.4) with an estimate in the norm
induced by the exploratory covariance. More specifically, we have that,

‖(K −K?)Σ?(K)
1
2 ‖2HS ≤ CK,σ2

u
‖(K −K?)Σ

1/2
x,0‖2HS,

therefore ensuring good performance under the exploratory distribution is enough to ensure good performance
under any other induced distribution.

In finite dimensions with full-rank noise λmin(Σw) > 0, the above comparison follows quite directly. The
key challenge in our setting is ruling out the possibility that one controller K “pushes” large eigenvalues of
Σw into one region of the state space, in which the other controller K0 induces small excitation. The key
insight is that the closed loop systems A? +B?K and A? +B?K0 differ only along the column space of B?,
and these directions are excited in the Σx,0 covariance due to the injection of Gaussian noise. Importantly,
the bound holds without further controllability assumptions, which may fail in infinite dimensions.

2.2 A Dimension-Free Perturbation Bound
Building on the above insight, we show that it suffices to have a prediction error bound (i.e estimate A? in the
Σx,0-induced HS norm) in order to synthesize a close to optimal controller. Since du is finite, we can recover
B? in the unweighted HS norm. Specifically, fix a stabilizing controller K0, and set Σx,0 := Σ?(K0, σ

2
u).

Now, define the error terms,

εcov = max{‖(Â−A?)Σ1/2
x,0‖HS, ‖B̂ −B?‖HS}, εop := max{‖Â−A?‖, ‖B̂ −B?‖}. (2.5)

Here, εcov corresponds to the relevant HS norms (weighted for A?, unweighted for B?). In addition to εcov,
we also consider a uniform (unweighted) operator norm bound error εop. This error needs to be smaller than
some problem dependent constant to ensure that (Â, B̂) is stabilizable, and that K̂ = K∞(Â, B̂) stabilizes
(A?, B?). To this end, our perturbation bound imposes the following condition:

Condition 2.1. The error εop defined in Eq. (2.5) satisfies εop ≤ Cstable := 1/229 ‖P?‖3op.

We now state the main perturbation bound. We assume 1 ≤ σ2
u . 1, as in our online algorithm.

Theorem 2.1. Let σ2
u ≥ 1, K0 = K∞(A0, B0), and Σx,0 := Σ?(K0, σ

2
u). If (A0, B0), (Â, B̂) both satisfy

Condition 2.1, then, for K̂ := K∞(Â, B̂),

J (K̂)− J (K?) . σ4
uM

36
? · L exp( 1

50

√
L) · ε2

cov, where L := log (e+
2e‖Â−A?‖2optr[Σx,0]

ε2cov
) ,

and M? is defined as in Eq. (1.4). Moreover, in finite dimensions with Σx,0 � 0, L can be replaced by
log(1 + cond(Σx,0)), where cond(·) denotes condition number.
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The main novelty of the above perturbation bound, relative to previous analysis of certainty equivalent
control is that, assuming that εop is smaller than a constant3, the suboptimality gap J (K̂)−J (K?) depends
only on the weighted HS norm or prediction error ε2

cov. In particular, we observe that L exp( 1
50

√
L) grows

more slowly as εcov → 0 than any power (εcov)α; hence, for any α > 0, there is some cα such that J (K̂) −
J (K?) ≤ cαM36

? ε2−α
cov .

Furthermore, in the finite dimensional setting with full rank noise covariance, the condition number of
Σx,0 is bounded; thus, L = O(1) in this regime, and the scaling is exactly ε2

cov, which is known to be optimal
[Mania et al., 2019, Simchowitz et al., 2020]. Moreover, Theorem 2.1 depends only on the operator norm
of natural control theoretic quantities, and hides no dimension like terms. Hence, up to M? dependence,
it matches the best-possible perturbations bounds attainable in the finite dimensional setting. Lastly, little
effort was made in sharpening the dependence on M?, which we believe can be refined considerably.

Proof Sketch of Theorem 2.1. The proof uses arguments in Section 2.1 to reduce to bounding ‖(K−K?)Σ
1/2
x,0‖HS.

A direct computation (Proposition C.2) shows that this term can be bounded in terms of εcov, and the
weighted error ‖Σ1/2

x,0 (P̂ − P?)Σ1/2
x,0‖HS, where P̂ := P∞(Â, B̂) is the certainty equivalent value function. In

Proposition C.4, we bound the latter by considering a linear interpolating curve (A(t), B(t)), t ∈ [0, 1] be-
tween (A?, B?) and (Â, B̂), and the value function P (t) = P∞(A(t), B(t)) along that curve. P (t) can be
shown to be continuously differentiable for all t ∈ [0, 1] under Condition 2.1, and hence it suffices to bound
the supremum of ‖Σ1/2

x,0P
′(t)Σ

1/2
x,0‖HS over t ∈ [0, 1]. Bounding this term requires the majority of our technical

effort, and relies on both the change-of-measure bounds similar to Lemma 2.1, and a careful application of
the self-bounding ODE method introduced by Simchowitz and Foster [2020]. The full proof of the end-to-end
bound, and all its constituent results, is outlined in Appendix C.

3 Algorithms & Regret Bounds
Having concluded our discussion of certainty equivalence, in this section we now leverage our earlier results
to prove that a simple explore-then-commit style algorithm, OnlineCE, achieves sublinear regret for LQR in
infinite dimension.

In order to more clearly communicate the salient features of our analysis, we divide this section into two
parts. First, we prove a regret bound assuming the learner has access to initial system estimates (A0, B0)
such that these operators lie within some problem dependent constant of the true system operators (A?, B?).
The following subsection shows how under an appropriate alignment condition, one can incorporate an initial
phase to the algorithm that achieves these warm start estimates (A0, B0) while only adding a constant term
(in T ) to the overall regret.

3.1 Regret with Warm-Start
We now describe the OnlineCE algorithm assuming access to warm-start estimates (A0, B0) of the true system
parameters (A?, B?). In particular, we assume

Condition 3.1 (Warm Start). The pair (A0, B0) satisfy max{‖A0 −A?‖op , ‖B0 −B?‖op} ≤ 1/2 · Cstable.

Under a minor technical extension, Cstable = 1/(229 ‖P?‖3op) can be replaced by a data dependent quantity
. ‖P∞(A0, B0)‖−3

op , which can be can be verified using only a confidence interval around (A?, B?). For
simplicity, we present the main algorithm without this modification, which we defer to Appendix F.1. Given
these estimates, our algorithm, OnlineCE, consists of the following explore-then-commit strategy:

1. Synthesize K0 := K∞(A0, B0) and choose inputs ut = K0xt + vt where vt ∼ N (0, I) (σ2
u = 1) for Texp

many iterations, collecting observations {(xt,vt)}
Texp

t=1.
3This condition can be relaxed for (A0, B0); it suffices that K0 is an arbitrary, stabilizing controller for (A?, B?).
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2. Compute system estimates (Â, B̂) via ridge regression on data {(xt,vt)}
Texp

t=1 followed by a projection
onto a safe set around warm start estimates (A0, B0) (see Appendix F for full pseudocode).

3. Synthesize K̂ = K∞(Â, B̂) and choose inputs ut = K̂xt for the remaining time steps.

Throughout, we let σj(Λ) denote the j-th largest eigenvalue of a PSD operator Λ. Furthermore, we define
Wtr := ‖B?‖2HS +

∑∞
j=1 σj(Σw) log(j), which captures the magnitude of noise in the system under an ex-

ploratory policy. Note that for Wtr to be finite, Σw needs to be slightly stronger than trace class. We recall
our earlier asymptotic notation: Õ(f(T )) suppresses logarithms, and O?(f(T )) := Õ(f(T )1+o(1)) where
o(1)→ 0 as T goes to infinity.

We now state our main regret bound for OnlineCE. For simplicity, we assume that the initial state is
drawn from the steady state covariance, x1 ∼ N (0,Σx,0) (see Appendix G.4 for further discussion).

Theorem 3.1. Let (σj)
∞
j=1 = (σj(Σx,0))∞j=1 be the eigenvalues of Σx,0 and define,

dλ := |{σj : σj ≥ λ}|, Ctail,λ := 1
λ

∑
j>dλ

σj .

If the learner has access to warm start estimates satisfying Condition 3.1, with probability 1 − δ, OnlineCE
satisfies

RegretT (OnlineCE) ≤ O?
(√

M42
? d2

max(dλ + Ctail,λ)T

)
where M? is as in Eq. (1.4) and dmax := max{tr [Σw] , du,Wtr}.

We state this first theorem in terms of the eigenvalues of Σx,0, but the bounds can also be stated in terms
of Σw under particular eigenvalue decay assumptions. We carry out this translation in Appendix D.2 through
novel eigenvalue comparison inequalities for Lyapunov operators which may be of independent interest. In
particular, the following result formalizes our earlier statement about the spectrum of Σw encoding the right
problem complexity as we remarked in Section 1.3.

Theorem 3.2. Let (σj(Σw))∞j=1 be the (descending) eigenvalues of Σw. In the setting of Theorem 3.1, the
OnlineCE algorithm suffers regret at most,

• (polynomial decay) O?
(√

M46
? d2

maxT
1+1/α

)
, if σj(Σw) = j−α for α > 1,

• (exponential decay) O?
(√

M45
? d2

maxduT
)
, if σj(Σw) = exp(−αj) for α > 0.

• (finite dimension) Õ
(√

M42
? (du + dx)3T

)
, if Hx = Rdx and Σw = I.

For finite dimensional systems, the extra terms depending on L become O(1), and we achieve the optimal√
d3

maxT regret, which is optimal in the regime where dx � du [Simchowitz and Foster, 2020]. The results
for polynomial and exponential decay illustrate how the ambient state dimension dx is only a very coarse
measure of complexity for linear control. Our analysis of certainty equivalence shows that the magnitude of
the system noise, tr [Σw], is a more accurate measure of problem hardness. While this measure is Ω(dx) in
the case of a full rank noise covariance, it can be considerably smaller as per our example in the introduction.

Comparison to Kakade et al. [2020] The authors consider a setting where the dynamics are kernelized
into a feature map, and the dynamical parameters are linear operators in the kernel space. Their model
requires a finite dimensional state with well-conditioned Gaussian noise. Furthermore, their bounds scale
with the ambient state dimension (via the optimal control cost J?), even if their associated intrinsic kernel
dimension is O(1). It is unclear how to extend their techniques to high-dimensional noise with spectral
decay, due to the subtleties of their change-of-measure argument (Lemma 3.9).

Moreover, the techniques in this paper (Lemma 2.1 and Lemma D.15) can also be used to attain refined
bounds on their algorithm-dependent intrinsic dimension quantity, γT (λ), which improves on worst-case
analyses based on kernel structure.
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3.2 Finding warm start estimates
We now move on to discussing how to achieve initial warm start estimates that satisfy Condition 3.1. To do
so, we require two additional assumptions. The first is standard within the online control literature (see for
example Dean et al. [2018], Mania et al. [2019], Cohen et al. [2019]):

Assumption 2 (Initial Controller). The learner has initial access to a controllerKinit that stabilizes (A?, B?).

The second is an alignment condition specific to our setting. Before stating it, we define Acl? := (A? +
B?Kinit) and let U(Λr + Λ/r)V be its SVD where Λr = diag(s1, . . . , sr) is a diagonal operator containing the
first r singular values and Λ/r is another diagonal operator whose first r entries are 0 and the rest contain
the tail singular values from sr+1 on. Furthermore, we define Σx,init := Σ?(Kinit, σ

2
u)

Assumption 3 (Alignment). There exists r <∞ and ρ > 0 such that,

V HΛ2
rV � ρΣx,init and sr+1 <

1

16
Cstable.

Since Σx,init � Σw, Assumption 3 holds for some r <∞ as long as Σw is positive definite in the sense that
all its eigenvalues are strictly larger than, though decaying to, 0. Using this alignment condition, we show
that the WarmStart algorithm returns estimates (A0, B0) satisfying Condition 3.1. Given an initial state
x1 = 0, WarmStart chooses actions according to ut = Kinitxt+vt for Tinit many iterations, where Tinit = O(1)
is a constant independent of the horizon T . Having collected a constant number of samples, the algorithm
returns ridge regression estimates. Ssee Appendix F for formal description of WarmStart.

Proposition 3.1. (informal) If Assumptions 2 and 3 hold, there exists a constant Tinit, independent of the
time horizon T , such that after collecting Tinit samples (xt,vt) under the exploration policy, ut = Kinitxt+vt,
for vt ∼ N (0, σ2

uI), with probability 1−δ, ridge regression returns estimates A0, B0 satisfying Condition 3.1.

Using this estimation result, we can prove the following corollary:

Corollary 3.1. If Assumptions 2 and 3 hold, then with probability 1− δ, the regret incurred by WarmStart
satisfies

RegretT (WarmStart) . log(1/δ)
(
σ2
utr [R] +

∥∥Q+KH
initRKinit

∥∥
op

tr
[
Σ?(Kinit, σ

2
u)
])
Tinit.

In Appendix G.4, we describe how running WarmStart followed by OnlineCE satisfies an end-to-end regret
guarantee whose asymptotics exactly match those of the OnlineCE algorithm.

4 Conclusion
In summary, this paper presents the first dimension-free regret guarantees for online LQR. We show that
with a warm start, a simple approach based on certainty equivalence achieves sublinear regret for any Σw

whose eigendecay is ever so slightly faster than trace-class and transition operator A? that has finite Hilbert-
Schmidt norm. While our bounds are nearly optimal when specialized to finite dimension, they provide a
step towards a much sharper understanding of problem complexity in broader settings.

We believe that there are a number of promising directions for future work in this area. For example, it
would be interesting to understand whether the alignment condition we introduce is necessary for certainty
equivalence to succeed, or whether having a small prediction error bound (i.e ‖(Â − A?)Σ1/2

x,0‖HS ≤ ε) is
in fact sufficient to guarantee that the certainty equivalent controller stabilizes the true system. Perhaps
other algorithmic ideas, such as system level synthesis [Wang et al., 2019], could be used to circumvent
operator-norm closeness. Furthermore, instead of depending on the ambient state dimension, our bounds
instead depend on spectral decay of the noise covariance Σw. It is an open question whether this measure
of complexity can be made even sharper in some settings.
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Lastly, given that our lower bounds rule out the possibility of infinite dimensional inputs, it is worth
exploring what additional structural assumptions are necessary in order to incorporate richer control struc-
tures. More broadly, it would be exciting to understand whether dimension-free rates are possible in more
general continuous control settings, or to extend the techniques from this paper to settings with partial
observability like LQG.
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A Extended Preliminaries, Organization, and Related Work

A.1 Organization
The appendix is organized as follows:

• Appendix A includes extended related work, a review of notation, and further preliminaries on linear
quadratic control.

• Part I contains all technical control theoretic contributions. Appendix B describes the various change of
covariance theorems used to swap between controllers. Appendix C establishes the perturbation bounds
for certainty equivalence. Appendix D states and proves various technical lemmas used throughout.

• Part II addresses estimation of system parameters from a single trajectory.

• In Part III, Appendix F contains a formal statement of the algorithms, Appendix G proves an upper
bound on the regret of OnlineCE, and Appendix H describes the lower bound requiring finite dimensions.

A.2 Extended Related Work
The problem of learning the parameters of a linear system is historically referred to as system identification,
and has been studied at length for systems of finite dimension. Classical asymptotic results are detailed in
Ljung [1999]; early non-asymptotic results [Vidyasagar and Karandikar, 2006, Hardt et al., 2018, Pereira
et al., 2010] suffered from opaque and possible exponential dependencies on system parameters. Dean et al.
[2019] presented the first finite-sample guarantees for control synthesis from statistical data, and estimation
techniques were later refined in subsequent works [Simchowitz et al., 2018, Sarkar and Rakhlin, 2019], and
extended to systems with partial observation [Oymak and Ozay, 2019, Simchowitz et al., 2019, Tsiamis and
Pappas, 2019]. Parallel work has studied estimation in the frequency domain [Tu et al., 2017, Helmicki et al.,
1991, Goldenshluger, 1998, Chen and Gu, 2000].

Building on system-identification, adaptive control considers the problem of refining estimates of system
parameters during a control task, so as to converge to a near-optimal policy. Classical results are detailed in
[Krstic et al., 1995, Ioannou and Sun, 2012]. The online LQR setting considered in this work is a special case.
The study of online LQR was initiated by Abbasi-Yadkori and Szepesvári [2011], who gave a computationally
intractable algorithm based on optimism in the face of uncertainty (OFU). Their algorithm obtained

√
T

regret, albeit with a potentially exponential dependence on dimension. Dean et al. [2018] gave an efficient
algorithm based on System Level Synthesis which obtained a T 2/3 regret bound with polynomial dependence
on the relevant problem parameters. Mania et al. [2019], Faradonbeh et al. [2018], and Cohen et al. [2019]
simultaneously presented efficient algorithms enjoying

√
T regret (as well as polynomial dependence in other

problem parameters). Cassel et al. [2020] and Simchowitz and Foster [2020] demonstrated that the
√
T rate

was indeed optimal. The latter provided matching upper and lower bounds of Θ̃(
√
dxd2

uT ) in terms of time
horizon and problem dimensions. Other approaches have studied Thompson sampling [Abeille and Lazaric,
2017, Ouyang et al., 2017, Abeille and Lazaric, 2018], though regret guarantees which depend transparently
on both time horizon and dimension remain elusive. Finally, Abeille and Lazaric [2020] provided an efficient
implementation of the OFU algorithm introduced by Abbasi-Yadkori and Szepesvári [2011], which attained√
T regret, and sacrifices suboptimal dependence in problem dimension for improved dependence in other

problem parameters. Similar regret guarantees were subsequently attained by Kakade et al. [2020] in a
non-linear control setting similar to the one studied in Mania et al. [2020]. There has also been work on
a number of related online control settings [Abbasi-Yadkori et al., 2014, Cohen et al., 2018], notably the
nonstochastic control setting proposed by Agarwal et al. [2019] and expanded upon in Hazan et al. [2020]
and Simchowitz et al. [2020].

The majority of the above approaches to online and adaptive control are model-based : that is, they learn a
representation of the model of the dynamics, and update their control policy accordingly. This present work
builds on past study of certainty equivalence [Mania et al., 2019, Simchowitz et al., 2020]; other approaches
include robust control synthesis via SLS [Dean et al., 2018, 2019], OFU [Abbasi-Yadkori and Szepesvári,
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2011, Abeille and Lazaric, 2020], SDP relaxations [Cohen et al., 2018], and other convex methods [Agarwal
et al., 2019, Simchowitz et al., 2020]. Concurrent work has also studied model-free approaches in the batch
[Fazel et al., 2018, Krauth et al., 2019] and online [Abbasi-Yadkori et al., 2019] settings, though recent work
suggest these approaches suffer from high variance, worse dimension dependence, and overall inferior sample
complexity [Tu and Recht, 2019].

Outside the controls literature, sample complexity and regret guarantees that do not explicitly depend
on the ambient dimension, but on more intrinsic measures for learning in RKHSs are well-known in the
supervised learning setting (see e.g. [Bartlett and Mendelson, 2002, Zhang, 2005]) as well as in bandit
problems [Srinivas et al., 2010]. More recently, these results have been extended to the reinforcement learning
literature as well, for a class of problems defined as linear MDPs [Jin et al., 2020, Agarwal et al., 2020, Yang
et al., 2020a]. While linear MDPs also make linearity assumptions on the system dynamics, the precise
assumption is quite different from those present in LQR. In a linear MDP, the conditional distribution of
the next state, given the current state and action is assumed to be linear under a known featurization of the
state, action pair. In contrast, LQRs only require the conditional mean to be linear and do not guarantee
certain nice properties of a linear MDP, such as the conditional expectation of any function of the next state
being linear in the features of the current state, action pair. Consequently, the results from linear MDPs are
incomparable to our work.

Somewhat related to our development here, the observation of using an accuracy measure for model
estimation that is informed by the value function parameterization has been recently leveraged in the rein-
forcement learning literature [Farahmand et al., 2017, Sun et al., 2019], though the analysis techniques are
quite different and the algorithms are not applicable to the continuous control setting.

A.3 Notation Review
Setting. Recall the state xt ∈ Hx, input ut ∈ Rdx , noise wt ∈ Hx, true dynamics operators (A?, B?), noise
covariance Σw, and cost function J (K), defined for any state-feedback controller K : Hx → Rdu which is
stabilizing for (A?, B?). The optimal cost of the LQR problem is J?, which is achieved the controller K?.

Given operators (A,B), P∞(A,B) and K∞(A,B) denote the value function and optimal controller (solv-
ing Eq. (2.1) and Eq. (2.2)). The dlyap operator, and its related quantities, are described in the extended
preliminaries below (Appendix A.4). Given a controller K which stabilizes (A,B), we set

P∞(K;A,B) := dlyap
(
A+BK, Q+KHRK

)
, (A.1)

where Q and R the costs operators. As detailed in Assumption 1, we assumed throughout the entirety of
our analysis that σmin(Q) > 1 and σmin(R) > 1.

Exploration. We use K0 to denote exploratory controllers, and Σx,0 to denote the induced exploratory
covariance with inputs ut = K0xt + vt, where vt ∼ N (0, σ2

uI) captures additional Gaussian excitation. We
let Σ0 := σ2

uB?B
H
? + Σw = E[(B?vt + wt) ⊗ (B?vt + wt)], so that Σx,0 = dlyap

(
(A? +B?K0)H, Σ0

)
. We

recall the dimension-free parameter from Eq. (1.4),

M? := max{‖A?‖2op, ‖B?‖2op, ‖P?‖
2
op , ‖Σw‖op , 1}. (A.2)

Certainty Equivalence We let Â, B̂ denote estimates of the true system operators A?, B?. Likewise, we
use P̂ := P∞(Â, B̂) and K̂ := K∞(Â, B̂) to describe the value function (solution to the the DARE over
Â, B̂) and optimal controller for the estimated system. Similarly, we define P? := P∞(A?, B?).

Linear Algebra. We let Hx denote a Hilbert space containing the states. Inputs ut lie in Rdu where
du <∞. We use upper case X for linear operators, and lower case bound x for vectors. XH and xH denote
adjoints. We let 〈·, ·〉 and ‖ · ‖ denote norms and inner products in the relevant Hilbert space. ‖ · ‖op, ‖ · ‖HS,
and ‖·‖tr denote operator, Hilbert-Schmidt (abbreviated as HS), and trace norms, respectively. Occasionally,
we use [XY ]algn := maxW :‖W‖op tr [XWY ].

Lastly, we adopt the shorthand log+(x) := max{log(x), 1} and use a . b to denote that a ≤ C · b where
C is a universal constant.
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A.4 Extended Preliminaries
The discrete Lyapunov operator and higher order operators Recall our earlier definition of the
Lyapunov operator,

Definition A.1 (Lyapunov Operator). Let A : Hx → Hx be a bounded stable linear operator and let
Λ : Hx → Hx be self-adjoint, dlyap (A, Λ) is a symmetric bounded operator that solves the matrix equation,

X = AHXA+ Λ. (A.3)

Furthermore, it has a closed-form expression given by:

dlyap (A, Λ) =

∞∑
j=0

(AH)jΛAj . (A.4)

Throughout our analysis, we will make repeated use of the higher order Lyapunov operator.

Definition A.2 (Higher Order Lyapunov Operator).

dlyap(m) (A, Σ) =

∞∑
j=0

(AH)jΛAj(j + 1)m (A.5)

As is shown in Lemma D.10, we have dlyap(1)

(
AH, Σ

)
= dlyap (A, dlyap (A, Σ)).

The Lyapunov operator satisfies a number of important properties which feature prominently in our
technical discussion. We state the following lemma describing some of the most important properties and
point the reader to Appendix D.2 for further results on Lyapunov theory.

Lemma A.1 (Lemma B.5 in Simchowitz and Foster [2020]). The following relationships hold for dlyap:

1. If Acl is stable and Y � Z, then dlyap (Acl, Y ) � dlyap (Acl, Z).

2. If Q � I and A+BK is stable, then

±dlyap (A+BK, Y ) � dlyap (A+BK, I) · ‖Y ‖op � P∞(K;A,B) · ‖Y ‖op

3. If Q � I, then P∞(A,B) � I.

4. If Acl is stable, then ‖dlyap (Acl, I)‖op =
∥∥dlyap (AH

cl, I
)∥∥

op
.

Stationary state covariances For controllers K such that A? +B?K is stable, we define the covariance
operator:

Σ?(K,σ
2
u) := lim

t→∞
E[xt ⊗ xt], s.t. xt+1 = A?xt +B?ut + wt,

where ut = Kxt + vt, wt
i.i.d∼ N (0,Σw),vt

i.i.d∼ N (0, σ2
uI).

We specialize Σ?(K) = Σ?(K, 0). A short calculation shows that:

Σ?(K,σ
2
u) = dlyap

(
(A? +B?K)H, Σw + σ2

uB?B
H
?

)
. (A.6)
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Interpretation of P -matrices as value functions The P -matrices P∞(A,B) and P∞(K;A,B) can be
interpreted in terms of value functions. Specifically, consider an LQR problem with cost operators Q,R and
initial state x0, but no noise:

xt+1 = A?xt +B?ut, t ≥ 0. (A.7)

We can then verify that the operator P∞(K;A,B) defined in Eq. (A.1) satisfies

〈x, P∞(K;A,B)x〉 =
∑
t≥0

〈x, Qx〉+ 〈Ku, RKut〉 subject to Eq. (A.7), with x0 = x.

The controller K∞(A,B) can be show to be the minimizer of the above cost over all policies, regardless of
starting state (see e.g. Bertsekas). The following calculation provides another perspective of P capturing
the costs of the LQR problem. From Eq. (1.2),

J (K) = lim
T→∞

1

T
E
[∑T

t=1 〈xt, Qxt〉+ 〈ut, Rut〉
]
, subject to ut = Kxt

= lim
T→∞

tr
[
(Q+KHRK)E[xt ⊗ xt]

]
= tr

[
(Q+KHRK)Σ?(K)

]
= tr

[
(Q+KHRK)dlyap

(
(A? +B?K)H, Σw

)]
= tr

[
dlyap

(
A? +B?K, Q+KHRK

)
Σw

]
= tr [P∞(K;A?, B?)Σw] .

The cost of a controller K is therefore captured by the trace inner product of P∞(K;A?, B?) and Σw.

Part I

Perturbation Bounds and Technical Lemmas
B The Change of Covariance Theorems
In this section, we state and prove the various change-of-covariance theorems required in the paper, including
Lemma 2.1, and its generalization Theorem B.1. We begin by stating the more general result and then
illustrate how Lemma 2.1 follows from this statement. We conclude by proving another comparison inequality
between the covariance operators induced by different stabilizing controllers.

To state the general theorem, recall the higher order Lyapunov operator defined in Definition A.2:

dlyap(m) (A, Σ) =

∞∑
j=0

(AH)jΛAj(j + 1)m. (B.1)

The result is as follows:

Theorem B.1. Let K1 : Hx → Rdu be such that A+BK1 is stable and let Λ ∈ SHx
+ be a trace class, positive

semi-definite operator. Then, for any K2 such that A+BK2 is also stable, we have that

dlyap
(
(A+BK1)H, Λ

)
� dlyap

(
(A+BK2)H, Λ

)
where Λ is a bounded operator defined as

Λ := 2Λ + 4B(K1 −K2) dlyap(2)

(
(A+BK1)H, Λ

)
(K1 −K2)HBH
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Proof of Theorem B.1. We argue by constructing a hypothetical dynamical system and analyzing its behavior
in two ways. In particular, define

Acl,1 := A+BK1 and Acl,2 := A+BK2

and consider the system,

xt+1 = Acl,1xt + wt, where x0 = 0 and ∀ t ≥ 0, wt
i.i.d∼ N (0,Λ). (B.2)

Then, for Σ1 := dlyap
(
AH

cl,1, Λ
)
we have that

Σ1 = lim
T→∞

Σ1;T ,where Σ1;T := E[xT ⊗ xT ],

and where the above limit exists due to monotonicity of Σ1;T . To prove our claim, let us express the evolution
of Eq. (B.2) as

xt+1 = Acl,2xt + (Acl,1 −Acl,2)xt + wt = Acl,2xt +B (K1 −K2)xt︸ ︷︷ ︸
:=ut

+wt.

Define the deterministic operator GT :=
[
I | Acl,2 | · · · | AT−1

cl,2

]
: HTx → Hx, and the random vector

z[T ] :=


BuT−1 + wT−1

. . .
Bu1 + w1

Bu0 + w0

 ∈ HTx
Now, we can rewrite xT as xT = GT z[T ], so that

Σ1;T := E[xT ⊗ xT ] = GTE[z[T ] ⊗ z[T ]]G
H
T (B.3)

Given a general linear operatorX : U → V, define diagT (X) : UT → VT as the block diagonal operator with T
copies ofX on its diagonal. Observe that if it holds that, for some psd Λ : Hx → Hx, E[z[T ]⊗z[T ]] � diagT (Λ),
then by Eq. (B.3),

Σ1 = lim
T→∞

GTE[z[T ] ⊗ z[T ]]G
H
T

� lim
T→∞

GTdiagT (Λ)GT

= lim
T→∞

T−1∑
t=0

Atcl,2Λ
(
AH

cl,2

)t
= dlyap

(
(A+BK2)H, Λ

)
.

Hence, it remains to bound E[z[T ] ⊗ z[T ]]. Let us introduce the shorthand u[T ] := (uT−1,uT−2, . . . ,u0),
and similarly for w[T ] and x[T ]. Then, using the definition of z[T ] and the fact that ut = (K1 −K2)xt,

E[z[T ] ⊗ z[T ]] = E[(diagT (B)u[T ] + w[T ])
⊗2]

= E[(diagT (B(K1 −K2))x[T ] + w[T ])
⊗2]

� 2diagT (B(K1 −K2)) · E[x[T ] ⊗ x[T ]] · diagT (B(K1 −K2))H + 2E[w[T ] ⊗w[T ]]

= 2diagT (B(K1 −K2)) · E[x[T ] ⊗ x[T ]] · diagT (B(K1 −K2))H + 2diagT (Λ). (B.4)

The inequality on the third line follows from the fact that,

(a+ b)⊗ (a+ b) = 2 (a⊗ a+ b⊗ b)− (a− b)⊗ (a− b).
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In the last line, we have used E[w[T ] ⊗w[T ]] = diagT (Λ) since w[T ] = (wT−1, . . . ,w0), and wt
i.i.d∼ N (0,Λ)

for t ≥ 0. To bound E[x[T ] ⊗ x[T ]], we introduce the block Toeplitz operator:

ToepT : HTx → HTx , with blocks Toep[i, j] = Aj−i−1
cl,1 Ij≥i+1.

Then, we have the identity x[T ] = ToepTw[T ], which implies that

Ex[T ] ⊗ x[T ] = ToepTE
[
w[T ] ⊗w[T ]

]
ToepHT = ToepT · diagT (Λ) · ToepHT , (B.5)

where wt
i.i.d∼ N (0,Λ) for t ≥ 0. To conclude, let us decompose ToepT into single-band operators via

Yn : HTx → HTx for n ∈ {1, . . . , T − 1}, via:

ToepT =

T−1∑
n=1

Yn, where Yn : HTx → HTx has blocks Yn[i, j] = Ij=i+n ·An−1
cl,1 . (B.6)

Hence, continuing from Eq. (B.5), and applying the substitution in Eq. (B.6), by Lemma D.1 we have that

E[x[T ] ⊗ x[T ]] � ToepT · diagT (Λ) · ToepHT (Eq. (B.5))

=

(
T−1∑
n=1

Yn

)
· diagT (Λ) ·

(
T−1∑
n=1

Yn

)H

(Eq. (B.6))

� 2

T−1∑
n=1

n2 · YndiagT (Λ)Y H
n (Lemma D.1)

A simple computation reveals that Xn := YndiagT (Λ)Y H
n is block diagonal with i-th block given by,

Xn[i, i] = In≤iAn−1
cl,1 Λ

(
AH

cl,1

)n−1
.

Thus,
(∑T

n=1 n
2 · YndiagT (Λ)Y H

n

)
is block diagonal with i-th block given by

i∑
n=1

n2 ·An−1
cl,1 ΛA

(n−1)H
cl,1 �

∑
n≥0

(n+ 1)2 ·Ancl,1ΛAnHcl,1

=
∑
n≥0

(n+ 1)2 · (A+BK1)nΛ ((A+BK1)n)
H

= dlyap(2) (Acl,1, Λ)

Hence, Ex[T ] ⊗ x[T ] � 2diagT

(
dlyap(2) (Acl,1, Λ)

)
. Combining with Eq. (B.4) gives

E[z[T ] ⊗ z[T ]] � 2diagT (B(K1 −K2)) · E[x[T ] ⊗ x[T ]] · diagT (B(K1 −K2))H + 2diagT (Λ),

� 4diagT (B(K1 −K2)) · diagT

(
dlyap(2) (Acl,1, Λ)

)
· diagT (B(K1 −K2))H + 2diagT (Λ)

= 4diagT

(
B(K1 −K2)dlyap(2) (Acl,1, Λ) (K1 −K2)HBH

)
+ 2diagT (Λ)

= diagT

(
4B(K1 −K2)dlyap(2) (Acl,1, Λ) (K1 −K2)HBH + 2Λ

)
.

This concludes the proof.
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B.1 Proof of Lemma 2.1
Proof. By Theorem B.1,

dlyap
(
(A? +B?K)H, Σw

)
� dlyap

(
(A? +B?K0)H, Z

)
(B.7)

where Z = 2Σw + 4B?B
H
? ‖K −K0‖2op

∥∥∥dlyap(2)

(
(A? +B?K)H, Σw

)∥∥∥
op
.

The remainder of the argument consists of simply bounding Z in terms of a constant times B?BH
? + Σw. By

Lemma D.11, we have that for PK = P∞(K;A?, B?),∥∥∥dlyap(2)

(
(A? +B?K)H, Σw

)∥∥∥
op
≤ n2 ‖PK‖op ‖Σw‖op + (n2 + 2n+ 2) ‖Σw‖op ‖PK‖

4
op exp

(
−‖PK‖−1

op n
)
.

Since ‖PK‖op > 1 (Lemma A.1), if we set n = 4 ‖PK‖op log
(

3 ‖PK‖op

)
≥
⌈
‖PK‖op log

(
5 ‖PK‖3op

)⌉
. This

implies that,

n2 ‖PK‖op ‖Σw‖op ≥ (n2 + 2n+ 2) ‖Σw‖op ‖PK‖
4
op exp

(
−‖PK‖−1

op n
)

and hence, ∥∥∥dlyap(2)

(
(A? +B?K)H, Σw

)∥∥∥
op
≤ 32 ‖Σw‖op ‖PK‖

3
op log

(
3 ‖PK‖op

)2

.

Therefore,

Z � 2Σw +
128

σ2
u

‖Σw‖op ‖K −K0‖2op ‖PK‖
3
op log

(
3 ‖PK‖op

)2

B?B
H
? σ

2
u

� max

{
2,

128

σ2
u

‖Σw‖op ‖K −K0‖2op ‖PK‖
3
op log

(
3 ‖PK‖op

)2
}

(Σw + σ2
uB?B

H
? ).

Going back to (B.7),

dlyap
(
(A? +B?K)H, Σw

)
� CK,σ2

u
· Σx,0

for CK,σ2
u

= max

{
2, 128

σ2
u
‖Σw‖op ‖K −K0‖2op ‖PK‖

3
op log

(
3 ‖PK‖op

)2
}
.

B.2 A Change of Controller Lemma
Lemma B.1. Let K1 be a stabilizing controller for the instance A?, B?. Then, for any stabilizing K2,

dlyap
(
(A? +B?K1)H, Σx,0

)
� CK · dlyap

(
(A? +B?K2)H, Σx,0

)
for

CK := 2

(
1 +

64 ‖K2 −K1‖2op

σ2
u

‖Σx,0‖op ‖P1‖3op log(2 ‖P1‖op)2

)

where P1 := P∞(K1;A?, B?)

Proof. We apply Theorem B.1 to get that,

dlyap
(
(A? +B?K1)H, Σx,0

)
� dlyap

(
(A? +B?K2)H, Λ

)
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for
Λ = 2Σx,0 + 4B?(K1 −K2)dlyap(2)

(
(A? +B?K1)H, Σx,0

)
(K1 −K2)HBH

? .

Since Σx,0 = dlyap
(
(A? +B?K0)H, σ2

uB?B
H
? + Σw

)
� σ2

uB?B
H
? , then letting ∆op = ‖K2 −K1‖op we have

that

Λ � 2

(
1 +

2∆2
op

σ2
u

∥∥∥dlyap(2)

(
(A? +B?K1)H, Σx,0

)∥∥∥
op

)
Σx,0. (B.8)

Using Lemma D.11, for any n ≥ 0, we can upper bound
∥∥∥dlyap(2)

(
(A? +B?K1)H, Σx,0

)∥∥∥
op

by

n2
∥∥dlyap ((A? +B?K1)H, Σx,0

)∥∥
op

+ (n2 + 2n+ 2) ‖Σx,0‖op ‖P1‖4op exp
(
−n ‖P1‖−1

op

)
. (B.9)

And, by properties of dlyap (Lemma A.1),∥∥dlyap ((A? +B?K1)H, Σx,0

)∥∥
op
≤
∥∥dlyap ((A? +B?K1)H, I

)∥∥
op
‖Σx,0‖op

= ‖dlyap ((A? +B?K1), I)‖op ‖Σx,0‖op

≤ ‖P1‖op ‖Σx,0‖op .

We can therefore upper bound Eq. (B.9) by:

n2 ‖Σx,0‖op ‖P1‖op + (n2 + 2n+ 2) ‖Σx,0‖op ‖P1‖4op exp
(
−n ‖P1‖−1

op

)
.

Setting n = n0 =
⌈
‖P1‖op log

(
5 ‖P1‖3op

)⌉
≤ 4 ‖P1‖op log(2 ‖P1‖op) (since ‖P1‖op > 1), we get that

(n2
0 + 2n0 + 2) ‖Σx,0‖op ‖P1‖4op exp

(
−n0 ‖P1‖−1

op

)
≤ n2

0 ‖Σx,0‖op ‖P1‖op .

Therefore, ∥∥∥dlyap(2)

(
(A? +B?K1)H, Σx,0

)∥∥∥
op
≤ 32 ‖Σx,0‖op ‖P1‖3op log(2 ‖P1‖op)2

Plugging this upper bound into Eq. (B.8) finishes the proof.

C Proof of Certainty Equivalence Perturbation Bounds
In this section, we provide the full proof of our end-to-end perturbation bound, Theorem 2.1, and the
constituent results that comprise the argument. These supporting results are outlined in Appendix C.1 and
Theorem 2.1 is proven in Appendix C.2. The constituent results given in Appendix C.1 are then proven in
the subsequent sections. As indicated in the main body of the paper, we assume throughout our presentation
that Q � I and R � I.

C.1 Main Constituent Results
C.1.1 Performance Difference

We begin by stating our own variant of the now-ubiquitous performance difference lemma for LQR, which
we use to bound the suboptimality of a controller K in terms of its Hilbert-Schmidt difference from K?,
weighted by the initial exploration covariance Σx,0. This result follows by combining the standard LQR
performance difference lemma with our change of measure result, Lemma 2.1.
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Lemma C.1. Let K be a stabilizing controller for A?, B?, then

J (K)− J (K?) ≤ CK,σ2
u

∥∥R+BH
? P?B?

∥∥
op

∥∥∥(K −K?)Σ
1/2
x,0

∥∥∥2

HS

for CK,σ2
u

= max

{
2, 128

σ2
u
‖Σw‖op ‖K −K0‖2op ‖PK‖

3
op log

(
3 ‖PK‖op

)2
}

for PK = P∞(K;A?, B?) defined as

in Lemma 2.1.

Proof. The proof follows by applying Lemma 2.1 on the standard performance difference lemma for LQR.
By Lemma 12 in Fazel et al. [2018] (as presented in Lemma 4 from Mania et al. [2019]),

J?(K)− J?(K?) = tr
[
Σ?(K)(K −K?)

H(R+BH
? P?B?)(K −K?)

]
.

Now, by Lemma 2.1, Σ?(K) � CK,σ2
u
· Σx,0., and therefore

tr
[
Σ?(K)(K −K?)

H(R+BH
? P?B?)(K −K?)

]
≤ CK,σ2

u
tr
[
Σx,0(K −K?)

H(R+BH
? P?B?)(K −K?)

]
≤ CK,σ2

u

∥∥R+BH
? P?B?

∥∥
op

∥∥∥(K −K?)Σ
1/2
x,0

∥∥∥2

HS
.

C.1.2 Intermediate K Perturbation

Next, we give a bound controlling the error ‖(K? − K̂)Σ
1/2
x,0‖HS in terms of the maximum of the errors,

max
{
‖B̂ −B?‖HS, ‖(Â−A?)Σ1/2

x,0‖HS, ‖Σ
1/2
x,0 (P̂ − P?)Σ1/2

x,0‖HS
}
.

The following proposition is proven in Appendix C.3.

Proposition C.2. Recall our earlier definitions, P̂ = P∞(Â, B̂), K̂ = K∞(Â, B̂). Assume that the following
inequality holds for some σ2

u ≥ 1, and ε ≤ 1,

max
{
‖B̂ −B?‖HS, ‖(Â−A?)Σ1/2

x,0‖HS, ‖Σ
1/2
x,0 (P̂ − P?)Σ1/2

x,0‖HS
}
≤ ε.

Furthermore, suppose (Â, B̂) is also stabilizable, let P0 = P∞(K0;A?, B?), and set

MK = max
{
‖A?‖2op , ‖B?‖

2
op , ‖P?‖op , ‖P̂‖op, ‖P0‖op, ‖Σw‖op, 1

}
,

be a uniform bound on the operator norm on relevant operators. Then,∥∥∥(K? − K̂)Σ
1/2
x,0

∥∥∥
HS
≤ 9σuεM

4
K .

The two challenges in applying Proposition C.2 are (a) verifying that the nominal system (Â, B̂) is
stabilizable, so that the uniform bound M is finite, and (b) bounding the weighted error Σ

1/2
x,0 (P̂ − P?)Σ1/2

x,0 .
We address these two parts of the argument in what follows.

C.1.3 Operator-Norm P -Perturbation

Proposition C.3. Fix two instances (A1, B1), (A2, B2), and define εop = max{‖B1−B2‖op, ‖A1−A2‖op}.
Suppose P1 = P∞(A1, B1), K1 := K∞(A1, B1), and fix a tolerance parameter η ∈ (0, 1]. Then,

• If εop ≤ η/(16 ‖P1‖3op), then P2 = P∞(A2, B2) and P∞(K1;A2, B2) are bounded operators, and

P2 � P∞(K1;A2, B2) � P1 + η‖P1‖opI � (1 + ‖P1‖)ηP1 (C.1)

• If the stronger condition εop ≤ η/(16(1 + η)4 ‖P1‖3op) holds, then,‖P2 − P1‖op ≤ η‖P1‖op.

The proof is deferred to Appendix C.4. One important consequence of the above bound is that, by setting
η = 1/11, Proposition C.3 shows that the closeness condition, Condition 2.1, implies that ‖P̂‖op ≤ 1.2‖P?‖op

(see Lemma C.8). This is an essential ingredient in the subsequent covariance-weighted bound.
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C.1.4 Covariance-Weighted Perturbation of P?

To state the covariance-weighted perturbation of P?, we recall the uniform closeness condition: Condition 2.1.

εop := max

{∥∥∥Â−A?∥∥∥
op
,
∥∥∥B̂ −B?∥∥∥

op

}
≤ 1

229 ‖P?‖3op

(C.2)

For the following proposition, we assume access to a stabilizing controllerK0, and define P0 := ‖P∞(K0;A?, B?)‖op.
We set MP? := ‖P?‖op and MP0

= ‖P0‖op

Proposition C.4. Suppose Â, B̂ satisfy Condition 2.1 and recall our earlier definition P̂ = P∞(Â, B̂). Then,∥∥∥Σ
1/2
x,0 (P̂ − P?)Σ1/2

x,0

∥∥∥
HS

. CP · εP ·
√

log+ (κP ) · φ(κP )αop ,

where φ(u) := e
√

log(u) and εP , CP , κP , αop are defined as:

ε2
P := 2‖(A? − Â)Σ

1/2
x,0‖2HS + 2.4MP?‖B? − B̂‖2HS ‖Σx,0‖op

CP := M4
P0
M

3/2
P?

√
(1 +

‖Σx,0‖op
σ2
u

) ‖Σx,0‖op

κP := 1 + 2
‖Â−A?‖2optr[Σx,0]

ε2P

αop := 2M
5/2
P?

εop ≤ 1/100.

Furthermore, the above bound holds for any ε′P ≥ εP . For the case of finite-dimensional systems where
Σx,0 � 0, κP can be replaced by 1 + cond(Σx,0), where cond(·) denotes the condition number.

Proposition C.4 is the most involved and technically innovative in our analysis. Its proof is presented in
Appendix C.5.

C.2 Proof of the End-to-End Perturbation Bound: Theorem 2.1
We recall:

M? := max{‖A?‖2op , ‖B?‖
2
op , ‖P?‖op , ‖Σw‖op , 1}. (C.3)

Proof. The proof follows by combining the performance difference lemma (Lemma C.1), our controller per-
turbation bound (Proposition C.2), and the riccati perturbation bound (Proposition C.4).

Applying performance difference Starting from the performance difference lemma, we have that

J(K̂)− J(K?) ≤ CK̂,σ2
u

∥∥R+BH
? P?B?

∥∥
op

∥∥∥(K̂ −K?)Σ
1/2
x,0

∥∥∥2

HS

for CK̂,σ2
u

= max

{
2, 128

σ2
u
‖Σw‖op

∥∥∥K̂ −K0

∥∥∥2

op

∥∥PK̂∥∥3

op
log
(

2
∥∥PK̂∥∥op

)2
}

where PK̂ = P∞(K̂;A?, B?).

We now simplify these terms. Since K0 = K∞(A0, B0) and K̂ = K∞(Â, B̂) where both pairs of systems
(A0, B0), (Â, B̂) satisfy the uniform closeness conditions, we can apply Lemma C.8 to conclude that

P∞(K̂;A?, B?) � 1.2P?,
∥∥∥P∞(Â, B̂)

∥∥∥
op
≤ 1.1 ‖P?‖op , and ‖P∞(A0, B0)‖op ≤ 1.1 ‖P?‖op .

Furthermore, by Lemma D.7, ‖K̂‖2op ≤ ‖P∞(Â, B̂)‖op and similarly, ‖K0‖2op ≤ ‖P∞(A0, B0)‖op. There-
fore,

‖K̂ −K0‖2op ≤ 2(‖K̂‖2op + ‖K0‖2op) ≤ 4.4 ‖P?‖op .
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Recalling that M? = ‖P?‖op ≥ 1 and σ2
u ≥ 1,

128

σ2
u

‖Σw‖op

∥∥∥K̂ −K0

∥∥∥2

op

∥∥PK̂∥∥3

op
log
(

2
∥∥PK̂∥∥op

)2

.M5
? log(M?)

2.

Therefore, under the uniform closeness assumptions, we have that,

J(K̂)− J(K?) .M7
? log(M?)

2
∥∥∥(K̂ −K?)Σ

1/2
x,0

∥∥∥2

HS
, (C.4)

where we have used the calculation
∥∥R+BH

? P?B?
∥∥

op
≤ ‖R‖op +

∥∥BH
? P?B?

∥∥
op

.M2
? .

Controller perturbation Now, we include our controller perturbation bound (Proposition C.2) which
states that for MK defined as,

MK = max
{
‖A?‖2op , ‖B?‖

2
op , ‖P?‖op , ‖P̂‖op, ‖P0‖op, ‖Σw‖op, 1

}
,

we have that ∥∥∥(K? − K̂)Σ
1/2
x,0

∥∥∥
HS
≤ 9σuεM

4
K .

for

ε = max

{∥∥∥B̂ −B?∥∥∥2

HS
,
∥∥∥(Â−A?)Σ1/2

x,0

∥∥∥2

HS
,
∥∥∥Σ

1/2
x,0 (P̂ − P?)Σ1/2

x,0

∥∥∥2

HS

}
.

Under the uniform operator norm closeness, we again have ‖P̂‖op . ‖P?‖op . M?, and similarly for P0.
Therefore, MK as defined in Proposition C.2 satisfies MK . M? . Using the controller perturbation, we
then conclude that, ∥∥∥(K̂ −K?)Σ

1/2
x,0

∥∥∥2

HS
. σuM

9
? log(M?)

2ε. (C.5)

Riccati perturbation The last step in the proof is to apply our Riccati perturbation bound from Propo-
sition C.4. The bound states that,∥∥∥Σ

1/2
x,0 (P̂ − P?)Σ1/2

x,0

∥∥∥2

HS
≤ C2

P · ε2
P · log+ (κP ) · φ(κP )1/50

where φ(u) := e
√

log(u), and the remaining quantities are defined as,

ε2
P := 2‖(A? − Â)Σ

1/2
x,0‖2HS + 2.4 ‖P?‖op

∥∥∥B? − B̂∥∥∥2

HS
‖Σx,0‖op

CP . ‖P∞(A0, B0)‖4op ‖P?‖
3/2
op

√
(1 +

‖Σx,0‖op
σ2
u

) ‖Σx,0‖op

κP := 1 + 2
‖Â−A?‖2optr[Σx,0]

ε2P

We note that by Condition 2.1, ‖P∞(A0, B0)‖op . ‖P?‖op. Furthermore, by Lemma A.1 and the fact σ2
u ≥ 1,

‖Σx,0‖op =
∥∥dlyap ((A? +B?K0)H, B?B

H
? σ

2
u + Σw

)∥∥
op

≤
∥∥dlyap ((A? +B?K0)H, I

)∥∥
op

∥∥B?BH
? σ

2
u + Σw

∥∥
op

= ‖dlyap (A? +B?K0, I)‖op

∥∥B?BH
? σ

2
u + Σw

∥∥
op

≤ M?(σ
2
uM?),
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where we have used the fact that I � Q and hence

‖dlyap (A? +B?K0, I)‖op ≤
∥∥dlyap (A? +B?K0, Q+KH

? RK?

)∥∥
op

= ‖P?‖op .

Using this calculation, we can then bound the relevant quantities as:

C2
P .M11

? (1 + ‖Σx,0‖op /σ
2
u) ‖Σx,0‖op . σ2

uM
15
?

ε2
P .M3

? ε
2

log+(κP ) ≤ log

(
e+

2e‖Â−A?‖2optr [Σx,0]

ε2

)
:= L,

where we also note that Proposition C.4 allows us to replace L by log(1 + cond(Σx,0)) in finite dimension
with Σx,0 � 0. Using these simplifications, we get that,∥∥∥Σ

1/2
x,0 (P̂ − P?)Σ1/2

x,0

∥∥∥2

HS
. σ2

uM
18
?

√
L exp(

1

50

√
L)ε2. (C.6)

Wrapping up Combining this last equation with the bounds from Eq. (C.4) and Eq. (C.5), the total
power of M? is M (7+9+18)

? log(M?)
2 ≤ M36

? , yielding:

J(K̂)− J(K?) . σ4
uM

36
? L1/2 exp(

1

50

√
L)ε2.

C.3 Proof of Intermediate K Perturbation: Proposition C.2
Recall the definition

MK = max
{
‖A?‖2op , ‖B?‖

2
op , ‖P?‖op , ‖P̂‖op, ‖P0‖op, ‖Σw‖op, 1,

}
,

where P0 = P∞(K0;A?, B?). To simplify notation, we use M = MK . Furthermore, we assume σ2
u ≥ 1, as

is chosen in our algorithm later on. Our proof appeals to the following lemma from Mania et al. [2019]:

Lemma C.5 (Mania et al. [2019]). Let f1, f2 be γ-strongly convex functions. Let xi = arg min fi(x) for
i = 1, 2. If ‖∇f1(x2)‖ ≤ ε then, ‖x1 − x2‖ ≤ ε/γ

Proof of Proposition C.2. The proof is inspired by that of Lemma 2 in Mania et al. [2019]. Consider the
functions f? and f̂ defined as,

f?(X) :=
1

2

∥∥∥R1/2X
∥∥∥2

HS
+

1

2

∥∥∥P 1/2
? B?X

∥∥∥2

HS
+
〈
BH
? P?A?Σ

1/2
x,0 , X

〉
HS

f̂(X) :=
1

2

∥∥∥R1/2X
∥∥∥2

HS
+

1

2

∥∥∥P̂ 1/2B̂X
∥∥∥2

HS
+
〈
B̂HP̂ ÂΣ

1/2
x,0 , X

〉
HS
,

where 〈A, B〉HS = tr
[
AHB

]
denotes the Hilbert-Schmidt inner product. Both functions are strongly convex

with strong convexity parameter lower bounded by σmin(R) ≥ 1. We observe that,

∇f?(X) = (BH
? P?B? +R)X +BH

? P?A?Σ
1/2
x,0 .

∇f̂(X) = (B̂HP̂ B̂ +R)X + B̂HP̂ ÂΣ
1/2
x,0 .

and hence,

X? = arg min
X

f?(X) = −(BH
? P?B? +R)−1BH

? P?A?Σ
1/2
x,0 = K?Σ

1/2
x,0

X̂ = arg min
X

f̂(X) = −(B̂HP̂ B̂ +R)−1B̂HP̂ ÂΣ
1/2
x,0 = K̂Σ

1/2
x,0 .
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Next, we show that the norm of the difference between both gradients is small. We will repeatedly use the
fact that ‖AB‖HS ≤ ‖A‖op ‖B‖HS (and similarly ‖AB‖HS ≤ ‖B‖op ‖A‖HS) throughout the remainder of
the proof.∥∥∥∇f?(X)−∇f̂(X)

∥∥∥
HS
≤
∥∥∥BH

? P?B? − B̂HP̂ B̂
∥∥∥
HS
‖X‖op +

∥∥∥(BH
? P?A? − B̂HP̂ Â)Σ

1/2
x,0

∥∥∥
HS
. (C.7)

Bounding the first term in the above decomposition,∥∥∥B̂HP̂ B̂ −BH
? P?B?

∥∥∥
HS

(i)

≤
∥∥∥B̂HP̂ B̂ −BH

? P̂B?

∥∥∥
HS

+
∥∥∥BH

? (P̂ − P?)B?
∥∥∥
HS

≤
∥∥∥B̂HP̂ B̂ ± B̂HP̂B? −BH

? P̂B?

∥∥∥
HS

+ ε

≤
∥∥∥B̂HP̂ (B̂ −B?)

∥∥∥
HS

+
∥∥∥(B̂ −B?)P̂B?

∥∥∥
HS

+ ε

≤ 4M3/2ε,

where in the last line, we used ‖B̂‖op ≤ ε + ‖B?‖op ≤ 2
√
M , since ε ≤ 1 and M ≥ max{1, ‖B?‖2op}. In

inequality (i), we used the following calculation:∥∥∥BH
? (P̂ − P?)B?

∥∥∥2

HS
= tr

[
BH
? (P̂ − P?)B?BH

? (P̂ − P?)B?
]

≤ tr
[
BH
? (P̂ − P?)Σx,0(P̂ − P?)B?

]
(B?BH

? � Σx,0)

= tr
[
Σ

1/2
x,0 (P̂ − P?)B?BH

? (P̂ − P?)Σ1/2
x,0

]
≤ tr

[
Σ

1/2
x,0 (P̂ − P?)Σx,0(P̂ − P?)Σ1/2

x,0

]
.

The last line is equal to
∥∥∥Σ

1/2
x,0 (P̂ − P?)Σ1/2

x,0

∥∥∥2

HS
which is less than ε2 by assumption. Next, we bound the

second term in Eq. (C.7),∥∥∥(B̂HP̂ Â−BH
? P?A?)Σ

1/2
x,0

∥∥∥
HS
≤
∥∥∥(B̂HP̂ Â−BH

? P̂A?)Σ
1/2
x,0

∥∥∥
HS︸ ︷︷ ︸

T1

+
∥∥∥BH

? (P̂ − P?)A?Σ1/2
x,0

∥∥∥
HS︸ ︷︷ ︸

T2

.

We bound T1 as follows:∥∥∥(B̂HP̂ Â± B̂HP̂A? −BH
? P̂A?)Σ

1/2
x,0

∥∥∥
HS
≤
∥∥∥B̂HP̂ (Â−A?)Σ1/2

x,0

∥∥∥
HS

+
∥∥∥(B̂ −B?)HP̂A?Σ1/2

x,0

∥∥∥
HS

≤ ε
∥∥∥B̂P̂∥∥∥

op
+ ε

∥∥∥P̂A?Σ1/2
x,0

∥∥∥
op

≤
(

2M3/2 +M3/2
∥∥∥Σ

1/2
x,0

∥∥∥
op

)
ε,

where again we used ‖B̂‖ ≤
√

2M . Before bounding T2, we observe that:

A?Σx,0A
H
? � 2(A? +B?K0)Σx,0(A? +B?K0)H + 2(B?K0)Σx,0(B?K0)H

� 2Σx,0 + 2 ‖Σx,0‖op ‖K0‖2opB?B
H
?

� 2(1 + ‖Σx,0‖op ‖K0‖2op)Σx,0. (C.8)

To go from the first to the second line, we have used the fact that since

Σx,0 = dlyap
(
(A? +B?K0)H, B?B

H
? σ

2
u + Σw

)
,
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by definition of dlyap,

(A? +B?K0)Σx,0(A? +B?K0)H = Σx,0 −B?BH
? σ

2
u − Σw � Σx,0.

Applying (C.8), we can now bound T2 using a similar calculation as before,∥∥∥BH
? (P̂ − P?)A?Σ1/2

x,0

∥∥∥2

HS
= tr

[
BH
? (P̂ − P?)A?Σx,0A

H
? (P̂ − P?)B?

]
≤ 2(1 + ‖K0‖2op ‖Σx,0‖op)tr

[
BH
? (P̂ − P?)Σx,0(P̂ − P?)B?

]
= 2(1 + ‖K0‖2op ‖Σx,0‖op)

∥∥∥Σ
1/2
x,0 (P̂ − P?)Σ1/2

x,0

∥∥∥2

HS

≤ 2(1 + ‖K0‖2op ‖Σx,0‖op)ε2.

Returning to Eq. (C.7),

‖∇f?(X)−∇uf̂(X)‖ ≤ 5M3/2ε ‖X‖op

+

(
2M3/2 +M3/2

∥∥∥Σ
1/2
x,0

∥∥∥
op

+
√

2(1 + ‖K0‖2op ‖Σx,0‖op)

)
ε,

and for X = X? = K?Σ
1/2
x,0 , we have that,

‖∇f̂(X?)‖ ≤ 4M3/2ε
∥∥∥K?Σ

1/2
x,0

∥∥∥
op

+

(
2M3/2 +M3/2

∥∥∥Σ
1/2
x,0

∥∥∥
op

+
√

2(1 + ‖K0‖2op ‖Σx,0‖op)

)
ε.

We now simplify the above. By Lemma D.7, we can take ‖K?‖op ≤ ‖P?‖
1/2
op ≤ M1/2, and ‖K0‖op ≤

‖PK0‖
1/2
op ≤M1/2, where PK0 = P∞(K0;A?, B?). Moreover, Lemma D.9 yields ‖Σx,0‖op ≤ ‖PK0‖

2
op (‖Σw‖op+

σ2
u ‖B?‖

2
op) ≤ σ2

uM
3 (since σ2

u ≥ 1). Hence,

‖∇f̂(X?)‖ ≤ 4M7/2ε+ (2M3/2 + σuM
5/2 +

√
2(1 + σ2

uM
4))ε ≤ 9σuM

4ε.

Lastly, by Lemma C.5, ∥∥∥X? − X̂
∥∥∥
HS

=
∥∥∥(K? − K̂)Σ

1/2
x,0

∥∥∥
HS
≤ 9σuM

4ε
1

σmin(R)
.

The precise statement follows by applying our assumption that σmin(R) > 1.

C.4 Proof of Operator Norm P -Perturbation: Proposition C.3
We begin the proof with the following lemma, which ensures that the Lyapunov function of a stable matrix
A1 is also a Lyapunov function for a sufficiently nearby matrix A2:

Lemma C.6. Let A1, A2 be two matrices with A1 stable. Set P1 = dlyap (A1, Σ), where Σ � I. Fix an
α ∈ (0, 1), and suppose that ‖A1 −A2‖2op ≤ α2

16‖P1‖3op
. Then, AH

2P1A2 � P1(1− 1−α
‖P1‖op

), and iterating,

(AH
2 )jP1A

j
2 � P1(1− 1− α

‖P1‖op

)j , ∀j ≥ 0.
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Proof of Lemma C.6. From Lemma D.9, AH
1P1A1 � P1(1 − ‖P1‖−1

op ). Set ∆ = A2 − A1. For any τ > 0,
invoking Lemma D.3,

AH
2P1A2 � (A1 + ∆)HP1(A1 + ∆)

= AH
1P1A1 + ∆HP1∆ + ∆HP1A1 +AH

1P1∆

� (1 + τ)AH
1P1A1 +

(
1 +

1

τ

)
∆HP1∆

� (1 + τ)P1(1− ‖P1‖−1
op ) +

(
1 +

1

τ

)
‖∆‖2op ‖P1‖op

� P1

{
(1− ‖P1‖−1

op )(1 + τ) +

(
1 +

1

τ

)
‖∆‖2op ‖P1‖op

}
,

where the last line follows from the fact that P1 � I sinceQ � I. Using our assumption that ‖∆‖2op ≤ α2

16‖P1‖3op
and optimizing over τ , a short calculation shows that the expression between brackets above is bounded by
(1− (1− α)/ ‖P1‖op).

The next proposition provides a perturbation bound for the dlyap operator:

Proposition C.7. Let A1 be a linear operator, Σ � I, and P1 = dlyap (A1, Σ). Define ‖·‖◦ to be any spectral
norm (i.e. ◦ ∈ {op,HS, tr}). Then, for any α ∈ [0, 1), linear operator A2 with ‖A1 − A2‖2op ≤ α2

16‖P1‖3op
, and

any symmetric Σ0, dlyap (A2, Σ0) is a bounded operator, and

‖dlyap (A2, Σ0)− dlyap (A1, Σ0) ‖◦ ≤ 2C◦ ‖A1 −A2‖op ‖P1‖7/2op (1− α)−2,

where C◦ = ‖P−1/2
1 Σ0P

−1/2
1 ‖◦.

Proof of Proposition C.7. Set ∆ = A1 − A2, and define the terms En := P
1/2
1 (An1 − An2 ), γ := 1 − 1−α

‖P1‖op
.

Since A1, A2 satisfy the necessary closeness conditions, by Lemmas C.6 and D.9, we have that,

max{‖P 1/2
1 An1‖op, ‖P 1/2

2 An1‖op} ≤
√
‖P1‖opγn. (C.9)

Next, by closed form expression for dlyap,

dlyap (A2, Σ0)− dlyap (A1, Σ0) =
∑
n≥0

(An2 )HΣ0A
n
2 − (An1 )HΣ0A

n
1

=
∑
n≥1

(An2 −An1 )HΣ0A
n
2 +An1 Σ0(An2 −An1 )

= −
∑
n≥1

EH
nP
−1/2
1 Σ0A

n
2 + (An1 )HΣ0P

−1/2
1 En,

and thus,

‖dlyap (A2, Σ0)− dlyap (A1, Σ0) ‖◦ ≤
∑
n≥1

‖En‖op

(
‖P−1/2

1 Σ0A
n
2‖◦ + ‖(An1 )HΣ0P

−1/2
1 ‖◦

)
≤
∑
n≥1

‖En‖op‖P−1/2
1 Σ0P

−1/2
1 ‖◦

(
‖P 1/2

1 An2‖op + ‖P 1/2
1 An1‖op

)
≤ ‖P−1/2

1 Σ0P
−1/2
1 ‖◦︸ ︷︷ ︸

:=C◦

∑
n≥1

‖En‖op

(
‖P 1/2

1 An2‖+ ‖P 1/2
1 An1‖

)
≤ 2C◦

∑
n≥1

‖En‖op

√
‖P1‖op γ

n. (Eq. (C.9))
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Next, we bound ‖En‖op. Using the identity, An1 −An2 =
∑n
i=0A

i
1∆An−i−1

2 ,

‖En‖op ≤
n∑
i=0

‖P 1/2
1 Ai1‖op‖∆‖op‖An−i−1

2 ‖op

≤
n∑
i=0

‖P 1/2
1 Ai1‖op‖∆‖op‖P 1/2

1 An−i−1
2 ‖op, (P1 � I)

≤ ‖∆‖op‖P1‖op

n∑
i=0

√
γn−1. (Eq. (C.9))

Hence, combining the above,

‖dlyap (A2, Σ0)− dlyap (A1, Σ0) ‖◦ ≤ 2C◦ ‖∆‖op ‖P1‖3/2op

∑
n≥1

nγn−1/2

≤ 2C◦ ‖∆‖op ‖P1‖3/2op

∑
n≥1

nγn−1 (γ ≤ 1)

= 2C◦ ‖∆‖op ‖P1‖3/2op (1− γ)−2.

Substituting in γ = (1− 1−α
‖P1‖op

), the above becomes 2C◦ ‖∆‖op ‖P1‖7/2op (1− α)−2, concluding the proof.

We may now conclude the proof of Proposition C.3

Proof of Proposition C.3. We prove the each part of the proposition individually.

Part 1 Define Σ1 := K>1 RK1 +Q. Then,

P2 � P∞(K1;A2, B2) = dlyap (A2 +B2K1, Σ1)

� dlyap (A1 +B1K1, Σ1) + I · ‖dlyap (A1 +B1K1, Σ1)− dlyap (A2 +B2K1, Σ1) ‖op

= P1 + I · ‖dlyap (A1 +B1K1, Σ1)− dlyap (A2 +B2K1, Σ1) ‖op (C.10)

If ε2
0 := ‖A1+B1K1−(A2+B2K1)‖2op ≤ 1

16‖P1‖3op
, then, invoking Proposition C.7 with Σ0 ← Σ1, ‖·‖◦ ← ‖·‖op,

α← 1/2, and noting how C◦ ≤ 1, we can conclude that,

‖dlyap (A1 +B1K1, Σ1)− dlyap (A2 +B2K1, Σ1) ‖op ≤ 8ε0 ‖P1‖7/2op .

Observe that if ε0 ≤ η/(8 ‖P1‖5/2op ) for some η ∈ (0, 1], then (since ‖P1‖op ≥ 1 by Lemma D.7) it holds that
ε2

0 ≤ 1
64‖P1‖3op

. Plugging into the inequality above, we get our desired result,

P2 � P1 + η ‖P1‖op · I.

Therefore, to finish the proof of Part 1, we only need to verify that, under the assumptions of the proposition,
ε0 ≤ η/(8 ‖P1‖5/2op ). By the definition of ε0 and Lemma D.7,

ε0 ≤ ‖A1 −A2‖op + ‖K1‖op ‖B1 −B2‖op ≤ (1 + ‖K1‖op)εop ≤ 2 ‖P1‖1/2op εop.

Since, εop ≤ η/(16 ‖P1‖3op), this calculation above proves that ε0 ≤ η/(8 ‖P1‖5/2op ).
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Part 2 Fix a parameter η0 ∈ (0, 1) to be chosen, and let η be as in the theorem statement. Switching the
roles of the indices i = 1 and i = 2 in the first part of the proposition, we find that if εop ≤ η0/(16 ‖P2‖3op),
we can establish the following PSD inequalities:

P1 � P∞(K2;A1, B1) � P2 + η0‖P2‖opI. (C.11)

If in addition εop ≤ η/(16 ‖P2‖3op), then we have ‖P2‖op ≤ (1 + η)‖P1‖op. Therefore, if εop ≤ η0/(16(1 +

η)3 ‖P1‖3op) (replacing P2 in the denominator by P1), then P1 � P2 + η0(1 + η)‖P1‖opI.
Selecting η0 ← η/(1 + η), we have that if εop ≤ η/(16(1 + η)4 ‖P2‖3op), P1 � P2 + η‖P1‖opI. Hence,

combining with Part 1, we have that ‖P1 − P2‖op ≤ η‖P1‖op.

C.5 Proof of Weighted P -Perturbation: Proposition C.4
Our argument is based on the self-bounding ODE method introduced by Simchowitz and Foster [2020],
where the perturbation bound is derived from considering an interpolating curve A(t), B(t) between the
ground-truth instances (A?, B?) and estimated instance (Â, B̂).

Definition C.1 (Interpolating Curves). Given estimates (Â, B̂) of (A?, B?), for t ∈ [0, 1] we define,

A(t) := A? + t(Â−A?), B(t) := B? + t(B̂ −B?).

In addition, we define the optimal controller K(t), closed-loop matrix Acl(t), and value function P (t) as

K(t) := K∞(A(t), B(t)), Acl(t) := A(t) +B(t)K(t), P (t) := P∞(A(t), B(t)).

Finally, define the following error term in the closed loop matrix

∆Acl
(t) := Â−A? + (B̂ −B?)K(t).

At the core of the technique is verifying that the instances along the curve (A(t), B(t)) remain stabilizable,
so that the operators K(t), P (t) are well defined. The following guarantee, established in Appendix C.5.3,
ensures that this is the case.

Lemma C.8. Assume that (Â, B̂) satisfy Condition 2.1. Then:

1. The instances (A(t), B(t)) are stabilizable along t ∈ [0, 1], and supt∈[0,1] ‖P (t)‖op ≤ 1.1 ‖P?‖op

2. supu,t∈[0,1] ‖P∞(K(t);A(u · t), B(u · t))‖op ≤ 1.2 ‖P?‖op

Since instances (A(t), B(t)) are stabilizable along t ∈ [0, 1], Lemma D.18 ensures that P ′(t) is Frechet
differentiable in the operator norm, and its derivative is

d

dt
P (t) = dlyap (Acl(t), E(t)) , (C.12)

where E(t) := Acl(t)
HP (t)∆Acl

(t) + ∆Acl
(t)HP (t)Acl(t). (C.13)

The formal definition of the Frechet derivative is deferred to Definition D.2; in this section, we shall only
use it as a condition to call relevant lemmas. The heart of proposition is based off the following observation
which follows from part (c) of Lemma D.20:∥∥∥Σ

1/2
x,0 (P? − P̂ )Σ

1/2
x,0

∥∥∥
HS

=
∥∥∥Σ

1/2
x,0 (P (0)− P (1))Σ

1/2
x,0

∥∥∥
HS
≤ sup
t∈[0,1]

∥∥∥Σ
1/2
x,0P

′(t)Σ
1/2
x,0

∥∥∥
HS
.

To prove the main result, it remains to show the following bound on the derivative:

∀t ∈ [0, 1],
∥∥∥Σ

1/2
x,0P

′(t)Σ
1/2
x,0

∥∥∥
HS
≤ CP · εP ·

√
log+ (κP ) · φ(κP )αop . (C.14)
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We verify that Eq. (C.14) holds in Appendix C.5.1.
A key step along the way is the following “change of system” lemma, which allows us to bound the norm of

the error in a covariance induced by one closed-loop system A1+B1K by that induced by another, A2+B2K.
This proposition is, in some sense, the mirror image of the change-of-covariance theorems in Appendix B.
In those results, we keep the system fixed but change the controller. Here, we keep the controller fixed, but
change the system.

Proposition C.9. Let (A1, B1) and (A2, B2) be two systems, K a controller, and define for u ∈ [0, 1]:

Ā(u) := A1 + u(A2 −A1) B̄(u) := B1 + u(B2 −B2), Ācl(u) := Ā(u) + B̄(u)K.

Assume that K stabilizes all instances (Ā(u), B̄(u)), so that

M̄ := max
u∈[0,1]

∥∥P̄ (u)
∥∥

op
<∞, where P̄ (u) := dlyap

(
Ācl(u), Q+KHRK

)
.

Finally, define ∆̄Acl
:= d

du Ācl(u) = (A2 −A1) + (B2 −B1)K, let Σ � 0 be a trace class operator, and define
the error terms:

ε2
sys,i := tr

[
∆̄H
Acl

∆̄Acl
dlyap

(
(Ai +BiK)H, Σ

)]
, i ∈ {1, 2}.

Then, setting the operator [X,Y ]algn := max{‖XWY ‖tr : ‖W‖op = 1} the following bound holds,

ε2
sys,2 ≤ ψdiff(εsys,1) · ε2

sys,1

where ψdiff(ε) := 2 exp

3

2
M̄
∥∥∆̄Acl

∥∥
op

√√√√log+

(
e ·
[
∆̄H
Acl

∆̄Acl
,Σ
]
algn

M̄3

ε2

) .

Moreover, these relationships hold for any ε ≥ εsys,1.

The proof relies on a careful application of the self-bounding ODE method. The full proof is given in
Appendix C.5.2.

C.5.1 Establishing Eq. (C.14)

Proof. Our proof proceeds in multiple steps. First, we majorize the weighted derivative Σ
1/2
x,0P

′(t)Σ
1/2
x,0 in

terms of two PSD operators Y1(t), Y2(t); a careful analysis shows it suffices to bound the operator norm of
Y1(t) and the trace of Y2(t). The term Y1(t) is straightforward to control; the term Y2(t) requires appeal to
the change-of-system error bound in Proposition C.9. The proof concludes with an application of one of our
change-of-covariance bounds (Lemma B.1), and some further simplifications.

Majorization by Y1(t), Y2(t) Define for all t ∈ [0, 1] and α > 0 the quantities:

E1(t) := Acl(t)
HP (t)Acl(t), E2(t) := ∆Acl

(t)HP (t)∆Acl
(t), E[α](t) :=

α

2
E1(t) +

1

2α
E2(t).

By the AM-GM inequality in Lemma D.3, E(t) � E[α](t) for all t ∈ [0, 1] and α > 0 (recall that E(t) is
defined in Eq. (C.13)). Since the solution of the Lyapunov equation preserves PSD order (Lemma A.1),

−Σ
1/2
x,0dlyap

(
Acl(t), E[α](t)

)
Σ

1/2
x,0︸ ︷︷ ︸

:=−Y[α](t)

� Σ
1/2
x,0P

′(t)Σ
1/2
x,0 � Σ

1/2
x,0dlyap

(
Acl(t), E[α](t)

)
Σ

1/2
x,0︸ ︷︷ ︸

:=Y[α](t)

.
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Now, observe that since dlyap (·, ·) is linear in its second argument, we can express

Y[α](t) =
α

2
Y1(t) +

1

2α
Y2(t), where

Y1(t) := Σ
1/2
x,0dlyap

(
Acl(t), Acl(t)

HP (t)Acl(t)
)

Σ
1/2
x,0

Y2(t) := Σ
1/2
x,0dlyap

(
Acl(t), ∆Acl

(t)HP (t)∆Acl
(t)
)

Σ
1/2
x,0 .

From Lemma D.5, we show that the PSD domination of Σ
1/2
x,0P

′(t)Σ
1/2
x,0 by the weighted linear combinations

of the form Y[α](t) imply that ∥∥∥Σ
1/2
x,0P

′(t)Σ
1/2
x,0

∥∥∥
HS
≤
√
‖Y1(t)‖op · tr[Y2(t)]. (C.15)

We now proceed to bound the terms ‖Y1(t)‖op and tr[Y2(t)] individually. We let M = 1.2 ‖P?‖op, which
upper bounds supt∈[0,1] ‖P (t)‖op by Lemma C.8.

Bounding ‖Y1(t)‖op By Lemma D.9 we have that (Acl(t)
H)jP (t)Acl(t)

j � P (t)(1−‖P (t)‖−1
op )j . Therefore,

using our uniform upper bound on ‖P (t)‖ from Lemma C.8, the following inequality holds for T1:

‖Y1(t)‖op =
∥∥∥Σ

1/2
x,0dlyap

(
Acl(t), Acl(t)

HP (t)Acl(t)
)

Σ
1/2
x,0

∥∥∥
op

=

∥∥∥∥∥∥Σx,0

∞∑
j=0

(
Acl(t)

H
)j+1

P (t)Acl(t)
j+1

∥∥∥∥∥∥
op

≤
∥∥∥Σ

1/2
x,0P (t)Σ

1/2
x,0

∥∥∥
op

∞∑
j=0

(1− ‖P (t)‖−1
op )j+1

≤ ‖Σx,0‖op ‖P (t)‖2op

≤ ‖Σx,0‖opM
2. (C.16)

Bounding tr [Y2(t)] via change of system Commuting traces and rewriting
∑∞
j=0Acl(t)

jΣx,0

(
Acl(t)

H
)j

as dlyap
(
Acl(t)

H, Σx,0

)
, we have

tr [Y2(t)] = tr
[
Σ

1/2
x,0dlyap

(
Acl(t), ∆Acl

(t)HP (t)∆Acl
(t)
)

Σ
1/2
x,0

]
= tr

[
dlyap

(
Acl(t)

H, Σx,0

)
∆Acl

(t)HP (t)∆Acl
(t)
]

≤ M · tr
[
∆Acl

(t)dlyap
(
Acl(t)

H, Σx,0

)
∆Acl

(t)H
]
. (C.17)

In the last line, we used that for anyX � 0, and operatorsX,A, tr
[
XAHY A

]
= tr

[
AXAHY

]
≤ ‖Y ‖op tr

[
AXAH

]
.

Note however that our estimation guarantees hold under the true system A?, B?, whereas the above
bound holds under a closed loop system involving the matrices A(t), B(t). To this end, we invoke the change
of system guarantee, Proposition C.9. We instantiate Proposition C.9 with the following substitutions:

• Take K ← K(t), (A1, B1)← (A(t), B(t)), and (A2, A2)← (A?, B?).

• By Lemma C.8, M̄ can be upper bounded by M := 1.2‖P?‖op := 1.2M?.

• ∆̄Acl
= A? −A(t) + (B? −B(t))K(t)) = −t∆Acl

(t). Hence, bounding supt∈[0,1] ‖K(t)‖op ≤
√
M :

‖∆̄Acl
‖op ≤ ‖∆Acl

(t)‖op ≤ ‖A? −A(t)‖op + ‖B? −B(t)‖op‖K(t)‖op

≤ εop(1 + ‖K(t)‖op) ≤ εop(1 +
√
M) ≤ 2

√
Mεop ≤ 2.4

√
MP? . (C.18)
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• Define the aligned error,

ε2
algn := max

t∈[0,1]

[
∆Acl

(t)H∆Acl
(t),Σx,0

]
algn

. (C.19)

• With these substitutions, we can take

ψ(ε) := 2 exp

3 · 1.23/2 ·M3/2
P?

εop

√√√√log+

(
1.23eM3

P?
·
ε2

algn

ε2

) . (C.20)

Applying these substitutions, Proposition C.9 entails

tr [Y2(t)] ≤Mtr
[
∆Acl

(t)H∆Acl
(t)dlyap

(
(A(t) +B(t)K(t))H, Σx,0

)]
≤Mψ(ε)ε, ∀ε ≥ T3 (C.21)

where T3 := tr
[
∆Acl

(t)H∆Acl
(t)dlyap

(
(A? +B?K(t))H, Σx,0

)]
. (C.22)

Bounding T3 via change of controller Focusing on the remaining trace term T3, by Lemma B.1 we
can switch the controller K(t) inside the Lyapunov operator to K0 and pay a multiplicative constant,

T3 = tr
[
∆Acl

(t)H∆Acl
(t)dlyap

(
(A? +B?K(t))H, Σx,0

)]
≤ CK · tr

[
∆Acl

(t)H∆Acl
(t)dlyap

(
(A? +B?K0)H, Σx,0

)]
, (C.23)

where, for P0 = P∞(K0;A?, B?) and MP0 := ‖P0‖op, we define

CK := 2

(
1 +

64 maxt∈[0,1] ‖K0 −K(t)‖2op

σ2
u

‖Σx,0‖opM
3
P0

log(2MP0
)2

)
.

Next, we recall that Σx,0 = dlyap
(
(A? +B?K0)H, Σ0

)
where Σ0 = B?B?σ

2
u + Σw is equal to the steady-

state covariance induced by the initial controller K0. By Lemma D.10, we can rewrite the solution to
Lyapunov equation as,

dlyap
(
(A? +B?K0)H, Σx,0

)
= dlyap(1)

(
(A? +B?K0)H, Σ0

)
.

By applying Lemma D.12, and recalling that MP0 = ‖P0‖op,[X,Y ]algn := max{‖XWY ‖tr : ‖W‖op = 1}, we
can upper bound tr

[
∆Acl

(t)H∆Acl
(t)dlyap(1)

(
(A? +B?K0)H, Σ0

)]
as follows,

≤ n · tr
[
∆Acl

(t)H∆Acl
(t)dlyap

(
(A? +B?K0)H, Σ0

)]
+ (n+ 1)

[
∆Acl

(t)H∆Acl
(t),Σ0

]
algn
‖P0‖3op exp(−‖P0‖−1

op n)

= n · tr
[
∆Acl

(t)H∆Acl
(t)Σx,0

]
+ (n+ 1)

[
∆Acl

(t)H∆Acl
(t),Σ0

]
algn

M3
P0

exp(−M−1
P0
n)

≤ n · tr
[
∆Acl

(t)H∆Acl
(t)Σx,0

]
+ (n+ 1)ε2

algnM
3
P0

exp(−M−1
P0
n).

In the last inequality, we used that by Lemma D.6,
[
∆Acl

(t)H∆Acl
(t),Σx,0

]
algn
≤ ε2

algn where ε2
algn is defined

in Eq. (C.19). Next, by AM-GM and the fact that tr [XY ] ≤ tr [X ′Y ] for 0 � X � X ′ and Y � 0,

tr
[
∆Acl

(t)H∆Acl
(t)Σx,0

]
= tr

[(
Â−A? +K(t)(B̂ −B?)

)H (
Â−A? +K(t)(B̂ −B?)

)
Σx,0

]
≤ 2tr

[(
(Â−A?)H(Â−A?) +K(t)H(B̂ −B?)H(B̂ −B?)K(t)

)
Σx,0

]
= 2‖(Â−A?)Σ1/2

x,0‖2HS + 2‖(B̂ −B?)K(t)Σ
1/2
x,0‖2HS

≤ 2‖(Â−A?)Σ1/2
x,0‖2HS + 2 max

t∈[0,1]
‖K(t)‖2op‖(B̂ −B?)Σ

1/2
x,0‖2HS

≤ 2‖(Â−A?)Σ1/2
x,0‖2HS + 2M‖(B̂ −B?)Σ1/2

x,0‖2HS
≤ 2‖(Â−A?)Σ1/2

x,0‖2HS + 2.4MP?‖B̂ −B?‖2HS‖Σx,0‖op := ε2
P , (C.24)
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where above, we used the fact that ‖K(t)‖2op ≤ ‖P (t)‖op by Lemma D.7, which by Appendix C.5.3 is at
most M := 1.2MP? for all t ∈ [0, 1]. Hence,

tr
[
∆Acl

(t)H∆Acl
(t)dlyap(1)

(
(A? +B?K0)H, Σ0

)]
≤ nε2

P + (n+ 1)ε2
algnM

3
P0

exp(−M−1
P0
n).

To optimize over n, select n = dMP0
log

M3
P0
ε2algn
ε2P

e. Then, going back to Eq. (C.23) and putting things
together, we get that:

T3 ≤ CKtr
[
∆Acl

(t)H∆Acl
(t)dlyap(1)

(
(A? +B?K0)H, Σ0

)]
≤ CK(2n+ 1)ε2

P

≤ 3CKMP0ε
2
P log+

(
eM3

P0
ε2

algn

ε2
P

)
:= T̄3. (C.25)

Concluding the proof Combining Eqs. (C.21), (C.22) and (C.25), and M = 1.2MP? gives

max
t∈[0,1]

tr[Y2(t)] ≤Mψ(T̄3)T̄3 = 3.6 · CKMP?MP0ε
2
P log+

(
eM3

P0
ε2

algn

ε2
P

)
ψ(T̄3). (C.26)

Now, recall the definition from Eq. (C.20) that

ψ(ε) := 2 exp

3 · 1.23/2 ·M3/2
P?

εop

√√√√log+

(
1.23eM3

P?
·
ε2

algn

ε2

) .

Since this quantity is decreasing in ε, and since T̄3 ≥ 3MP0
CKε2

P ≥ 6MP0
ε2
P (recall CK ≥ 2),

ψ(T̄3) ≤ ψ(3MP0
CKε2

P )

≤ 2 exp

3 · 1.23/2 ·M3/2
P?

εop

√√√√log+

(
1.23eM3

P?
·

ε2
algn

6MP0
ε2
P

)
≤ 2 exp

4M
3/2
P?

εop

√√√√log+

(
M2
P?
ε2

algn

ε2
P

) ,

where in the last inequality, we use the simplifications 3 · 1.23/2 ≤ 4, 1.23 · e/6 ≤ 1, and MP? ≤ MP0 , since
MP0

is the norm of a suboptimal value function. Hence, continuing from Eq. (C.26),

max
t∈[0,1]

tr[Y2(t)] . CKMMP0ε
2
P log+

(
eM3

P0
ε2

algn

ε2
P

)
exp

4M
3/2
P?

εop

√√√√log+

(
M2
P?
ε2

algn

ε2
P

) . (C.27)

Recall from Eq. (C.24) that ε2
P := 2‖(Â−A?)Σ1/2

x,0‖2HS + 2.4MP?‖B̂−B?‖2HS‖Σx,0‖op. A similar computation
to that used to derive the bound in Eq. (C.24) (this time, invoking the domination property in Lemma D.6)
lets us bound

ε2
algn := max

t∈[0,1]

[
∆Acl

(t)H∆Acl
(t),Σx,0

]
algn

≤ 2
[
(Â−A?)H(Â−A?),Σx,0

]
algn

+ 2.4MP?

[
(B̂ −B?)H(B̂ −B?),Σx,0

]
algn

≤ 2‖Â−A?‖2optr [Σx,0] + 2.4MP?‖B̂ −B?‖2HS‖Σx,0‖op.
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Using the elementary inequality a+b
c+b ≤ 1 + a

c+b for a, b, c ≥ 0, we obtain

ε2
algn

ε2
P

≤ 1 +
2‖Â−A?‖2optr [Σx,0]

ε2
P

:= κP .

The above bound on tr[Y2(t)] then simplifies to:

max
t∈[0,1]

tr[Y2(t)] . CKMMP0
ε2
P log

(
eM3

P0
κP
)

exp

(
4M

3/2
P?

εop

√
log+

(
M2
P?
κP
))

. (C.28)

Combining with ?? and Eq. (C.16) with M = 1.2MP? yields∥∥∥Σ
1/2
x,0P

′(t)Σ
1/2
x,0

∥∥∥
HS
≤
√
‖Y1(t)‖op · tr[Y2(t)]

.
√
MP0M

3
P?
CK‖Σx,0‖opε2

P log
(
eM3

P0
κP
)

exp

(
2M

3/2
P?

εop

√
log+

(
M2
P?
κP
))

.

Simplifying the bound Recall that M = 1.2‖P?‖op, and MP? := ‖P?‖op. Hence, MP0
≥ MP? , since

P0 � P?, as P? is the optimal value function for the pair (A?, B?). Hence, from Lemma D.7. MP0
≥MP? ≥ 1,

‖K0‖2op ≤ ‖P0‖op := MP0
, and ‖K(t)‖2op ≤ 1.1 ‖P?‖op = 1.1MP? . We note also that

‖K0 −K(t)‖2op ≤ 2 ‖K0‖2op + 2 ‖K(t)‖2op ≤ 2(M2
P0

+M2) = 2(M2
P0

+ 1.22M2
P?),

which is less than or equal to 9M2
P0
. Noting MP0 ≥ 1, we can bound

CK .

(
1 +

M2
P0

σ2
u

‖Σx,0‖opM
3
P0

log(2MP0
)2

)
.M5

P0
log(2MP0)2

(
1 +
‖Σx,0‖op

σ2
u

)
.

Therefore, we get that
∥∥∥Σ

1/2
x,0P

′(t)Σ
1/2
x,0

∥∥∥
HS

is upper bounded by:

.
√
M6
P0
M3
P?

(1 +
‖Σx,0‖op

σ2
u

) ‖Σx,0‖op log
(
eM3

P0
κP
)
· log(2MP0

) · exp

(
2M

3/2
? εop

√
log+

(
M2
P?
κP
))
· εP .

To conclude, we bound

log(2MP0
) ·
√

log
(
eM3

P0
κP
)
≤ log(2MP0

)
(√

log (eκP ) +
√

log(M3
P0

)
)

.MP0

√
log+(κP ).

Therefore, the bound further simplifies to:

.M4
P0
M

3/2
P?

√
(1 +

‖Σx,0‖op
σ2
u

) ‖Σx,0‖op log+ (κP ) exp
(

2M
5/2
? εop

√
log+(κP )

)
· εP

.M4
P0
M

3/2
P?

√
(1 +

‖Σx,0‖op
σ2
u

) ‖Σx,0‖op log+ (κP ) · φ(κP )2M
5/2
P?

εop · εP ,

where φ(z) = exp(
√

log z).

38



Further simplifications in finite dimensions To conclude, we remark on how κP can be replaced
by 1 + cond(Σx,0), where cond(Σx,0) denotes the condition number, in finite dimensions. To see this, we

note that the term
∥∥∥Â−A?∥∥∥2

op
tr [Σx,0] in κP arose from an upper bound on

[
(Â−A?)H(Â−A?),Σx,0

]
algn

.

By Lemma D.6, one can similarly bound
[
(Â−A?)H(Â−A?),Σx,0

]
algn
≤ ‖Σx,0‖op

∥∥∥Â−A?∥∥∥2

HS
. In finite

dimensions with invertible Σx,0, we can therefore compute:∥∥∥Â−A?∥∥∥2

HS
≤ λmin(Σx,0)−1

∥∥∥(Â−A?)Σ1/2
x,0

∥∥∥2

HS
≤ ε2

P

2λmin(Σx,0)
.

Thus we can replace:

log(1 +
2
[
(Â−A?)H(Â−A?),Σx,0

]
algn

ε2
P

) ≤ log(1 +
2 ‖Σx,0‖op ε

2
P

2ε2
Pλmin(Σx,0)

) = log(1 + cond(Σx,0)).

C.5.2 Proof of Proposition C.9

Before beginning the proof, let us recall the setup. We let (A1, B1) and (A2, B2) be two systems, and K a
controller, and define for u ∈ [0, 1]

Ā(u) := A1 + u(A2 −A1) B̄(u) := B1 + u(B2 −B1), Ācl(u) := A(u) +B(u)K.

Assume that K stabilizes all instances (Ā(u), B̄(u)), so that

M̄ := max
u∈[0,1]

∥∥P̄ (u)
∥∥

op
<∞, where P̄ (u) := dlyap

(
Ācl(u), Q+KHRK

)
.

Finally, define ∆̄Acl
:= d

du Ācl(u) = (A2 −A1) + (B2 −B1)K.

Proof. The proof is based on analyzing the behavior of the curve,

z(u) : [0, 1]→ R := tr
[
∆̄H
Acl

∆̄Acl
dlyap

(
Ācl(u)H, Σ

)]
.

Since M̄ < ∞, Ācl(u) is stable for all u ∈ [0, 1], and hence the Lyapunov operator is well defined implying
that z(u) is finite.

In order to simplify our presentation, we let Z(u) = dlyap
(
Ācl(u)H, Σ

)
. Since Ācl(u) is a linear curve

supported on stable operators, Lemma D.19 ensures that Z(u) is continuously Frechet-differentiable, with
Frechet derivative equal to

Z ′(u) = dlyap
(
Ācl(u)H, ∆̄Acl

Z(u)Ācl(u)H + Ācl(u)Z(u)∆̄H
Acl

)
. (C.29)

From part (a) of Lemma D.20, z(u) is continuously differentiable (as a real-valued curve), and its derivative
is z′(u) = tr[∆̄H

Acl
∆̄Acl

, Z ′(u)]. By applying the PSD AM-GM inequality twice (Lemma D.3), we have that
for any α > 0,

Z ′(u) = ∆̄Acl
Z(u)Ācl(u)H + Ācl(u)Z(u)∆̄H

Acl
� 1

2
α · ∆̄Acl

Z(u)∆̄H
Acl

+
1

2
α−1Ācl(u)Z(u)Ācl(u)H. (C.30)
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Combining Eq. (C.30) and Eq. (C.29), and optimizing over α, we can upper bound the derivative of z(u),

z′(u) = tr
[
∆̄H
Acl

∆̄Acl
dlyap

(
Ācl(u)H, ∆̄Acl

Z(u)Ācl(u)H + Ācl(u)Z(u)∆̄H
Acl

)]
≤

tr
[
∆̄H
Acl

∆̄Acl
dlyap

(
Ācl(u)H, ∆̄Acl

Z(u)∆̄H
Acl

)]︸ ︷︷ ︸
:=R1


1/2

(C.31)

×

tr
[
∆̄H
Acl

∆̄Acl
dlyap

(
Ācl(u)H, Ācl(u)Z(u)Ācl(u)H

)]︸ ︷︷ ︸
:=R2


1/2

. (C.32)

We now bound each of R1 and R2 individually.

Bounding R1 Beginning with R1,

tr
[
∆̄H
Acl

∆̄Acl
dlyap

(
Ācl(u)H, ∆̄Acl

Z(u)∆̄H
Acl

)]
≤
∥∥∆̄Acl

∥∥2

op
tr
[
dlyap

(
Ācl(u)H, ∆̄Acl

Z(u)∆̄H
Acl

)]
≤
∥∥∆̄Acl

∥∥2

op
·
∥∥dlyap (Ācl(u), I

)∥∥
op

tr
[
∆̄Acl

Z(u)∆̄H
Acl

]
≤
∥∥∆̄Acl

∥∥2

op

∥∥P̄ (u)
∥∥

op
tr
[
∆̄Acl

Z(u)∆̄H
Acl

]
.

=
∥∥∆̄Acl

∥∥2

op

∥∥P̄ (u)
∥∥

op
· z(u)

=
∥∥∆̄Acl

∥∥2

op
M̄ · z(u)

In the second line, we have used Lemma D.8. Furthermore, the second to last line is justified by the following
observation. Since I � Q and I � R,

dlyap
(
Ācl(u), I

)
� dlyap

(
Ācl(u), Q+KHRK

)
= P̄ (u).

Bounding R2 We first notice that,

dlyap
(
Ācl(u)H, Ācl(u)Z(u)Ācl(u)H

)
=

∞∑
j=0

Ācl(u)j+1dlyap
(
Ācl(u)H, Σ

)
(AH

cl)
j+1

= Ācl(u) · dlyap
(
Ācl(u)H, dlyap

(
Ācl(u)H, Σ

))
· Ācl(u)H

= dlyap
(
Ācl(u)H, dlyap

(
Ācl(u)H, Σ

))
− dlyap

(
Ācl(u)H, Σ

)
= dlyap(1)

(
Ācl(u)H, Σ

)
− dlyap

(
Ācl(u)H, Σ

)
� dlyap(1)

(
Ācl(u)H, Σ

)
.

The third line the calculation above follows from definition of the solution to the Lyapunov equation, i.e
Eq. (A.4). The second to last line is justified by Lemma D.10. Setting X := ∆̄H

Acl
∆̄Acl

� 0,

R2 = tr
[
Xdlyap

(
Ācl(u)H, Ācl(u)Z(u)Ācl(u)H

)]
≤ tr

[
Xdlyap(1)

(
Ācl(u)H, Σ

)]
.
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Recall [X,Y ]algn := max{‖XWY ‖tr : ‖W‖op = 1}. By Lemma D.12, the following bound holds for any
n ≥ 0:

R2 ≤ tr
[
Xdlyap(1)

(
Ācl(u)H, Σ

)]
≤ n · tr

[
Xdlyap

(
Ācl(u)H, Σ

)]
+ (n+ 1) [X,Σ]algn

∥∥P̄ (u)
∥∥3

op
exp(−

∥∥P̄ (u)
∥∥−1

op
n)

= n · z(u)

+ (n+ 1) [X,Σ]algn

∥∥P̄ (u)
∥∥3

op
exp(−

∥∥P̄ (u)
∥∥−1

op
n)

≤ n · z(u) + (n+ 1) [X,Σ]algn M̄
3 exp(−M̄−1n).

Concluding the proof Combining our bounds for R1 and R2, then for any n ≥ 0, we have

z′(u) ≤
√(∥∥∆̄Acl

∥∥2

op
M̄ · z(u)

)(
n · z(u) + (n+ 1) [X,Σ]algn M̄

3 exp(−M̄−1n)
)

(i)

≤
√
nM̄

∥∥∆̄Acl

∥∥
op
z(u) +

√
nM̄

∥∥∆̄Acl

∥∥
op

(
z(u)1/2 ·

√
n+ 1

n
[X,Σ]algn M̄

3 exp(−M̄−1n)

)
(ii)

≤
√
nM̄

∥∥∆̄Acl

∥∥
op
z(u) +

√
nM̄

∥∥∆̄Acl

∥∥
op

(
z(u)

2
+
n+ 1

2n
[X,Σ]algn M̄

3 exp(−M̄−1n)

)
≤ 3

2

√
nM̄

∥∥∆̄Acl

∥∥
op︸ ︷︷ ︸

:=a

·z(u) +
√
nM̄

∥∥∆̄Acl

∥∥
op
· [X,Σ]algn M̄

3 exp(−M̄−1n)︸ ︷︷ ︸
:=b

,

where (i) uses concavity of the square-root, and (ii) applies AM-GM. In other words, the scalar function z(u)
exhibits the self-bounding property z′(u) ≤ az(u) + b for a, b defined above. Hence, for any slack parameter
η > 0,4 a standard ODE comparison inequality (see, e.g. Simchowitz and Foster [2020], Lemma D.1) implies
that z(u) ≤ z̃(u), where z̃(u) solves the analogous ODE with equality:

z̃(u) = az̃′(u) + b+ η, z̃(0) = z(0) + η. (C.33)

The differential equation above has solution:

z̃(u) ≤
(
z(0) + η +

b+ η

a

)
exp(a · u)− b+ η

a
.

Taking η → 0 and bounding z(u) ≤ z̃(u) yields

z(1) ≤ z(0) exp(a) +
b

a
exp(a).

Substituting in the relevant quantities, the following bound holds for any n ≥ 1:

z(1) ≤ exp

(
3

2

√
nM̄

∥∥∆̄Acl

∥∥
op

)(
z(0) + [X,Σ]algn M̄

3 exp(−M̄−1n)
)
,

Taking n = dM̄ log

(
[X,Σ]algnM̄

3

z(0)

)
e ≤ M̄ log+

(
e[X,Σ]algnM̄

3

z(0)

)
lets us bound

[X,Σ]algn M̄
3 exp(−M̄−1n) ≤ z(0),

4This is useful to ensure strict domination of one ODE by another
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and hence

z(1) ≤ 2 exp

3

2
M̄
∥∥∆̄Acl

∥∥
op

√√√√log+

(
e · [X,Σ]algn M̄

3

z(0)

) z(0).

Recalling X = ∆̄H
Acl

∆̄Acl
, and recognizing z(1) as εsys,2 and z(0) as εsys,1, the bound follows. Note also that

this bound on the derivative is necessarily non-decreasing in the εsys,2 argument.

C.5.3 Proof of Lemma C.8

Proof. We apply the first bullet point of Proposition C.3 to establish both parts of the lemma.

Part 1: Take (A1, B1) = (A?, B?), and (A2, B2) = (A(t), B(t)). Since (A2, B2) lies on the segment joining
(A?, B?) and (Â, B̂), we have

max{‖A1 −A2‖op, ‖B1 −B2‖op} ≤ max{‖A? − Â‖op, ‖B? − B̂‖op} ≤ εop

Hence, if εop ≤ η
16‖P1‖3op

for η = 1/11, Proposition C.3 implies ‖P (t)‖op ≤ (1 + η) ‖P?‖op ≤ 1.1 ‖P?‖op.

Part 2 For part 2, take (A1, B1) = (A(t), B(t)) and (A2, B2) = (A(u · t), B(u · t)). Again, it holds
that max{‖A1 − A2‖op, ‖B1 − B2‖op} ≤ εop. Then, if εop ≤ η/(16 ‖P1‖3op), where P1 = P∞(A1, B1),
Proposition C.3 implies that

‖P∞(K(t);A(u · t), B(u · t))‖op ≤ (1 + η) ‖P1‖op .

From part 1 of the present lemma, ‖P1‖op ≤ (1 + η) ‖P?‖op. Hence, if εop ≤ η
16(1+η)3‖P?‖3op

, we have

‖P∞(K(t);A(u · t), B(u · t))‖op ≤ (1+η)2 ‖P?‖op. Computing (1+η)2 ≤ 1.2, and noting that 16(1+η)3/η ≤
229 concludes the proof.
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D Technical Lemmas
This section states and prove the main technical tools used throughout the paper. Appendix D.1 contains
linear algebraic tools, Appendix D.2 gives tools for controlling terms involving Lyapunov operators, Ap-
pendix D.3 states and proves a comparison theorem between the eigendecay of a PSD operator Λ and its
image dlyap (A, Λ). Finally, Appendix D.4 addresses the relevant differentiability considerations that arise
in infinite dimensional spaces.

D.1 Linear Algebra
Lemma D.1. Let Z � 0 and Y1, . . . , YT be bounded linear operators on a Hilbert space Hx. Then,(

T∑
t=1

Yt

)
Z

(
T∑
t=1

Yt

)H

� 2

T∑
t=1

t2 YtZY
H
t .

Proof. Let x be any vector in Hx, then〈
x,
(∑T

t=1 Yt

)
Z
(∑T

t=1 Yt

)H
x

〉
Hx

=

〈
Z1/2

(∑T
t=1 Yt

)H
x, Z1/2

(∑T
t=1 Yt

)H
x

〉
Hx

=

∥∥∥∥∑T
t=1 Z

1/2
(∑T

t=1 Yt

)H
x

∥∥∥∥2

Hx

.

Therefore it suffices to show that, for any x1, . . . ,xT ∈ Hx,
∥∥∥∑T

t=1 xt

∥∥∥2

Hx

≤ 2
∑T
t=1 t

2 · ‖xt‖2Hx
. We argue

by Cauchy Schwartz, ∥∥∥∥∥
T∑
t=1

xt

∥∥∥∥∥
2

Hx

=

∥∥∥∥∥
T∑
t=1

1

t
· t · xt

∥∥∥∥∥
2

Hx

≤

(
T∑
t=1

1

t2

)
·
T∑
t=1

‖t · xt‖2Hx
.

Since
∑T
t=1

1
t2 <

π2

6 ≤ 2, the bound follows.

Lemma D.2. Let M be a positive, semi-definite linear operator, then

log det(I +M) ≤ tr [M ]

Proof. If M has eigenvalues {σi}∞i=1, then I + M has eigenvalues {1 + σi}∞i=1. Since the determinant of a
linear operator is equal to the product of its eigenvalues, we have that,

log det(I +M) =
∑
i

log(1 + σi) ≤
∑
i

σi = tr [M ] ,

where we have used the numerical inequality log(1 + x) ≤ x for all x ≥ 0.

Lemma D.3. Let X,Y, P : Hx → Hx be linear operators and let P be positive semi-definite, then for any
α > 0 we have that

XPY H � α

2
XPXH +

1

2α
Y PY H.
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Proof. Letting v ∈ Hx, the proof follows by direct application of Cauchy-Schwarz and the AM-GM inequality:

〈
v, XPY Hv

〉
Hx

=

〈√
αP

1
2XHv,

1√
α
P

1
2Y Hv

〉
Hx

≤
∥∥∥√αP 1

2XHv
∥∥∥
Hx

∥∥∥∥ 1√
α
P

1
2Y Hv

∥∥∥∥
Hx

≤ α

2

∥∥∥P 1
2XHv

∥∥∥2

Hx

+
1

2α−1

∥∥∥P 1
2Y Hv

∥∥∥2

Hx

=
α

2

〈
v, XPXHv

〉
Hx

+
1

2α

〈
v, Y PY Hv

〉
Hx

.

Lemma D.4. Let X : Hx → Hx be a self-adjoint operator and let Y ∈ SHx
+ be a trace class, positive

semi-definite operator. If, −Y � X � Y then ‖X‖tr ≤ tr [Y ].

Proof. Let X =
∑∞
j=1 λjqjq

H
j denote the spectral decomposition of X. Then,

‖X‖tr =
∑
j≥1

|λj | =
∑
j≥1

|qH
jXqj |,

since −Y � X � Y , |qH
jXqj | ≤ qH

j Y qj for each j. Thus, ‖X‖tr ≤
∑∞
j=1 q

H
j Y qj = tr [Y ], since the elements

qj form an orthonormal basis.

Lemma D.5. Let X,Y1, Y2 be symmetric operators with Y1, Y2 � 0. For all α > 0, define Y[α] := α
2 Y1+ 1

2αY2,
and suppose that −Y[α] � X � Y[α] for any α > 0. Then,

‖X‖HS ≤
√
‖Y1‖optr [Y2].

Proof. Let X =
∑∞
j=1 λjqjq

H
j denote the spectral decomposition of X. Then,

‖X‖2HS =
∑
j≥1

λ2
j =

∑
j≥1

(qH
jXqj)

2.

For any fixed j, we have |qH
jXqj | ≤ infα>0 q

>
j Y[α]q, since for all α, Y[α] � X � Y[α]. Moreover, we compute

|qH
jXqj | ≤ inf

α>0
qH
j Y[α]qj , = inf

α>0

α

2
qH
j Y1qj +

1

2α
qH
j Y2qj

=
√
qH
j Y1qj · qH

j Y2qj ≤
√
‖Y1‖op

√
qH
j Y2qj ,

where we note that minα>0
a

2α + b
2α =

√
ab for nonegative a, b ≥ 0. Combining the above two displays,

‖X‖2HS ≤
∞∑
j=1

(√
‖Y1‖op

√
qH
j Y2qj ,

)2

= ‖Y1‖op

∞∑
j=1

qH
j Y2qj .

Since qj are an orthonormal basis,
∑∞
j=1 q

H
j Y2qj = tr [Y2]. The bound follows.

Lemma D.6. Define the operator [X,Y ]algn := max{‖XWY ‖tr : ‖W‖op = 1}. Then for any X ′ � X � 0,
[X,Y ]algn ≤ [X ′, Y ]algn. Similarly, for Y ′ � Y � 0, then [X,Y ′]algn ≤ [X,Y ]algn.
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Proof. Let us prove the first point; the second is analogous. Fix ε > 0, and let W be such that ‖XWY ‖tr ≥
[X,Y ]algn − ε. Let WY = UΣV H denote the singular value decomposition of WY . Then, ‖XWY ‖tr =∥∥XUΣV H

∥∥
tr

=
∥∥XUΣUH

∥∥
tr
, since V UH is orthonormal, and thus conjugating by it does not alter the trace

norm. Since X ′ � X � 0 and UΣUH � 0,∥∥XUΣUH
∥∥
tr

= tr
[
XUΣUH

]
≤ tr

[
X ′UΣUH

]
=
∥∥X ′UΣUH

∥∥
tr

=
∥∥X ′UΣV H

∥∥
tr

= ‖X ′WY ‖tr ≤ [X ′, Y ]algn .

The bound follows.

D.2 Lyapunov Theory
Lemma D.7. Let (A1, B1) be a stabilizable instance with stabilizing controller K1, and let P1 = P∞(K1;A1, B1)

be the associated value function. Then, if R � I and Q � I, it holds that P1 � I and ‖K1‖op ≤ ‖P1‖1/2op . In
particular, P∞(A1, B1) � I, and ‖K∞(A1, B1)‖op ≤ ‖P∞(A1, B1)‖op

1/2.

Proof. We have the identity:

P1 = P∞(K1;A1, B1) = dlyap
(
A1 +B1K1, Q+K>1 RK1

)
� Q+K1RK1

Thus, P1 � Q � I, and since R � I, K>1 K1 � K>1 RK1 � P1, so that ‖K1‖op ≤ ‖P1‖1/2op .

Lemma D.8. Let Y be a trace class operator, and suppose dlyap
(
XH, I

)
is bounded. Then,

‖dlyap (X, Y )‖tr ≤
∥∥dlyap (XH, I

)∥∥
op
‖Y ‖tr .

In particular, if Y � 0 is PSD, then

tr[dlyap (X, Y )] ≤
∥∥dlyap (XH, I

)∥∥
op

tr[Y ].

Proof. We write out Y in its spectral decomposition, Y =
∑∞
i=0 vi⊗vi ·λi, and use the form of the Lyapunov

solution to get that

dlyap (X, Y ) =

∞∑
j=0

(XH)jY Xj =

∞∑
i=0

∞∑
j=0

(XH)j(vi ⊗ vi)Xj · λi

�
∞∑
i=0

∞∑
j=0

(XH)j(vi ⊗ vi)Xj · |λi| := Z.

Similarly,

dlyap (X, Y ) � −
∞∑
i=0

∞∑
j=0

(XH)j(vi ⊗ vi)Xj · |λi| = −Z.

Therefore, from Lemma D.4

‖dlyap (X, Y )‖tr ≤ tr[Z] =

∞∑
i=0

‖dlyap (X, vi ⊗ vi)‖tr · |λi|

=

∞∑
i=0

|
〈
vi, dlyap

(
XH, I

)
vi
〉
Hx
| · |λi|

≤
∥∥dlyap (XH, I

)∥∥
op

∞∑
i=0

|λi|.
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Noting that
∑∞
i=0 λi = ‖Y ‖tr finishes the first part of the proof. For the second part, notice that if Y � 0,

then the nuclear and trace norms norms coincide.

Lemma D.9. Let A be stable and P = dlyap (A, Σ) be the corresponding value function for some Σ � I,
then for all integers j ≥ 0,

(AH
cl)
jPAj � P (1− ‖P‖−1

op )j .

In particular, for all j ≥ 0,

‖Aj‖2op ≤ ‖P‖op(1− ‖P‖−1
op )j .

Hence, for any over Σ′ � 0, ‖dlyap (A, Σ) ‖op ≤ ‖Σ‖op‖P‖2op.

Proof. Since P satisfies the Lyapunov equation, AHPA− P + Σ = 0, we can write for any x ∈ Hx:〈
x, AHPAx

〉
Hx

= 〈x, Px〉Hx
− 〈x, Σx〉Hx

= 〈x, Px〉Hx

(
1−
〈x, Σx〉Hx

〈x, Px〉Hx

)

≤ 〈x, Px〉Hx
(1− 1

‖P‖op

).

In the last line, we have use the assumption that Σ � I. Hence, AHPA � P (1− ‖P‖−1
op ) where ‖P‖op > 1.

Repeating this argument, we can in fact show that,

(AH)jPAj � P (1− ‖P‖−1
op )j .

For the second guarantee, since Σ � I, we have P � Σ � I. Hence,∥∥Aj∥∥2

op
=
∥∥(Aj)HAj

∥∥
op
≤
∥∥(Aj)HPAj

∥∥
op
≤ ‖P‖op(1− ‖P‖−1

op )j .

For the next lemma, we recall the higher order Lyapunov operator from Definition A.2,

dlyap(m) (A, Λ) :=

∞∑
j=0

(AH)jΛAj(j + 1)m.

Lemma D.10. Let A be a stable linear operator and Σ be self-adjoint, the the following identity holds:

∞∑
j=0

Ajdlyap
(
AH, Σ

)
(AH)j =

∞∑
j=0

AjΣ(AH)j · (j + 1).

Equivalently,
dlyap

(
AH, dlyap

(
AH, Σ

))
= dlyap(1)

(
AH, Σ

)
.

Proof. To simplify the proof, let Γ = dlyap
(
AH, Σ

)
. Since Γ = dlyap

(
AH, Σ

)
is the solution to the Lyapunov

equation AΓAH + Σ− Γ = 0, we have that

AΓAHΣ = Γ− Σ.
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By repeating this argument, we can in fact show that:

(A)jΓ(AH)j = Γ−
j−1∑
i=0

AiΓ(AH)i.

Using the fact that Γ =
∑∞
j=0A

jΣ(AH)j , it follows that (A)jΓ(AH)j =
∑∞
i=j A

iΣ(AH)i. Therefore, we can
rewrite dlyap

(
AH, dlyap

(
AH, Σ

))
as follows,

∞∑
j=0

AjΓ(AH)j =

∞∑
j=0

∞∑
i=j

AiΣ(AH)i

=

∞∑
j=0

AjΣ(AH)j · (j + 1).

which is exactly dlyap(1)

(
AH, Σ

)
.

Lemma D.11. Let A be stable and P = dlyap
(
A, Q+KHRK

)
be the corresponding value function, then

for all integers n ≥ 0,

For m = 1 :

dlyap(1)

(
AH, Σ

)
� n · dlyap

(
AH, Σ

)
+ (n+ 1) ‖Σ‖op ‖P‖

3
op exp(−‖P‖−1

op n) · I

For m = 2 :

dlyap(2)

(
AH, Σ

)
� n2 · dlyap

(
AH, Σ

)
+ (n2 + 2n+ 2) ‖Σ‖op ‖P‖

4
op exp(−‖P‖−1

op n) · I

Proof. We begin by expanding out the definition of dlyap(m)

(
A(t)H, Σ

)
,

dlyap(m)

(
AH, Σ

)
=

∞∑
j=0

AjΣ(AH)j · (j + 1)m

� nm
n−1∑
j=0

AjΣ(AH)j +

∞∑
j=n

AjΣ(AH)j · (j + 1)m

� nmdlyap
(
AH, Σ

)
+

∞∑
j=n

AjΣ(AH)j · (j + 1)m, (D.1)

where we have let the sum go to infinity in the first term. Focusing on the second term,

∞∑
j=n

AjΣ(AH)j · (j + 1)m � I · ‖Σ‖op

∞∑
j=n

∥∥Aj(AH)j
∥∥

op
· (j + 1)m

= I · ‖Σ‖op

∞∑
j=n

∥∥(AH)jAj
∥∥

op
· (j + 1)m (

∥∥NNH
∥∥

op
=
∥∥NHN

∥∥
op
)

� I · ‖Σ‖op

∞∑
j=n

∥∥(AH)jPAj
∥∥

op
· (j + 1)m (P � I)

� ‖Σ‖op ‖P‖op

∞∑
j=n

(j + 1) · (1− ‖P‖−1
op )j · I. (Lemma D.9)
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The result then follows by applying the following two identities regarding geometric series, which hold for
c ∈ (0, 1),

∞∑
j=n

(1− c)j · (j + 1) =
(1− c)n(cn+ 1)

c2

∞∑
j=n

(1− c)j · (j + 1)2 =
(1− c)n(c2n2 + 2cn− c)

c3
,

and using the fact that (1− c)t ≤ exp(−ct).

Lemma D.12. Let A be stable and P = dlyap
(
A, Q+KHRK

)
be the corresponding value function, then

for all integers n ≥ 0, and all PSD, bounded operators X, and Σ � 0,

tr
[
Xdlyap(1)

(
AH, Σ

)]
≤ n · tr

[
Xdlyap

(
AH, Σ

)]
+ (n+ 1) [X,Σ]algn ‖P‖

3
op exp(−‖P‖−1

op n),

where [X,Y ]algn := max{‖XWY ‖tr : ‖W‖op = 1}.

Proof. From Eq. (D.1) and the fact that tr [WY ] ≤ tr [WZ] for W � 0 and Y � Z,

tr
[
Xdlyap(1)

(
AH, Σ

)]
≤ ntr

[
Xdlyap

(
AH, Σ

)]
+ tr

X ∞∑
j=n

AjΣ(AH)j · (j + 1)

 .
We can then bound,

tr
[
XAjΣ(AH)j

]
≤ ‖Aj‖2op

∥∥∥∥X · Aj

‖Aj‖op
· Σ
∥∥∥∥
tr

≤ ‖Aj‖2op [X,Σ]algn = ‖Aj(Aj)H‖op [X,Σ]algn , (D.2)

where we note the above bound holds even if Aj = 0. The bound now follows from the computation given
in the proof of Lemma D.11.

D.3 Spectrum Comparison under Lyapunov Operator
Lemma D.13 (Iterated Weyl’s Eigenvalue Inequality). Let X1, . . . , Xn be a sequence of PSD operators, and
let λj(·) denote the j-eigenvalue. Then, λj(

∑n
i=1Xi) ≤

∑n
i=1 λdj/ne(Xi).

Proof. Consider n = 2. Then, for any indices k1, k2 such that k1 + k2 − 1 ≤ j, λi(X1 + X2) ≤ λk1(X1) +
λk2(X2). Hence, for general n,

λi

(
n∑
i=1

Xi

)
≤ λk1:n−1

(
n−1∑
i=1

Xi

)
+ λkn(Xn),

where kn + k1:n−1 ≤ j + 1. Iterating,

λk1:n−1

(
n−1∑
i=1

Xi

)
≤ λkn−1 (Xn−1) + λk1:n−2

(
n−2∑
i=1

Xi

)
,

where kn−1 + k1:n−2 ≤ k1:n−1 + 1. Continuing, we have that for any k1, . . . , kn with
∑n
i=1 ki ≤ j + (n− 1),

λj

(
n∑
i=1

Xi

)
≤

n∑
i=1

λki (Xi) .

Taking ki = dj/ne, we have
∑n
i=1 ki = ndj/ne. Now, if j/n is integral, then ndj/ne = j. Otherwise,

dj/ne = d(j − 1)/ne ≤ 1 + j−1
n , so ndj/ne ≤ n+ j − 1. In either case,

∑n
i=1 ki ≤ j + (n− 1), as needed.
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Lemma D.14. Let X be a bounded operator on a Hilbert space H, and Λ � 0 be a PSD operator on H.
Then σj(XΛXH) ≤ ‖X‖2opσj(Λ).

Proof. Since σj(XΛXH) = σj(XΛ1/2)2, it suffices to show that for any two bounded operators A,B,
σj(AB) ≤ ‖A‖σj(B). This follows using the variation representation of singular values:

σj(AB) = min
subspaces V⊆H of dimension j

(
max

q∈V:‖q‖H=1
‖ABq‖H

)
≤ ‖A‖op · min

subspaces V⊆H of dimension j

(
max

q∈V:‖q‖H=1
‖Bq‖H

)
= ‖A‖opσj(B).

Lemma D.15. Let A be a stable operator, Λ � 0, and let Σ = dlyap
(
AH, Λ

)
, and P = dlyap (A, I). Then,

for all indices j, n ≥ 1, we can bound

σj(Σ) ≤ ‖P‖2op

(
σd j

n+1 e
(Λ) + (1− ‖P‖−1

op )n ‖Λ‖op

)
∑
j≥k

σj(Σ) ≤ (n+ 1)‖P‖2op

 ∑
j≥d k

n+1 e

σj(Λ) + (1− ‖P‖−1
op )ntr [Λ]

 .

Moreover, from monotonicity of dlyap (Lemma A.1), the above also holds for P = dlyap (A, Z) for any
Z � I. In particular, if n ≥ ‖P‖op log

2‖Λ‖op
λ , then,

dλ(Σ) ≤ (n+ 1)dλ/(2‖P‖2op)(Λ).

Proof. Fix an integer n, and define the matrices

Xi := AiΛ(AH)i, Yn :=
∑
i>n

Xi.

By Lemma D.13,

σj(Σ) = σj(

n∑
i=1

Xi + Yn) ≤
n∑
i=1

σd j
n+1 e

(Xi) + σd j
n+1 e

(Yn). (D.3)

Now, for any index k, we can bound

σk(Xi) = σk(AiΛ(AH)i) = σk(AiΛ1/2) ≤ ‖Ai‖2opσk(Λ).

Hence,

σj(Σ) ≤

(
n∑
i=1

‖Ai‖2op

)
σd j

n+1 e
(Λ) + σd j

n+1 e
(Yn)

≤ ‖P‖2opσd j
n+1 e

(Λ) + σd j
n+1 e

(Yn), (D.4)

where in the last line we use Lemma D.9 to bound ‖Ai‖2op by a geometric series.
Now, let us bound the operator norm and trace of Yn. Again, by Lemma D.9, we have

‖Yn‖op =

∥∥∥∥∥∑
i>n

AiΛ(AH)i

∥∥∥∥∥
op

≤
∑
i>n

‖Ai‖2op ‖Λ‖op ≤ ‖P‖
2
op(1− ‖P‖−1

op )n ‖Λ‖op (D.5)
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and similarly

‖Yn‖tr ≤ ‖P‖2op(1− ‖P‖−1
op )ntr [Λ] . (D.6)

Combining these bounds, we have

σj(Σ) ≤ ‖P‖2opσd j
n+1 e

(Λ) + σd j
n+1 e

(Yn), (by Eq. (D.4))

≤ ‖P‖2opσd j
n+1 e

(Λ) + ‖Yn‖op , (by Eq. (D.5))

≤ ‖P‖2op

(
σd j

n+1 e
(Λ) + (1− ‖P‖−1

op )n ‖Λ‖op

)
.

and, ∑
j≥k

σj(Σ) ≤ ‖P‖2op

∑
j≥k

σd j
n+1 e

(Λ) +
∑
j≥k

σd j
n+1 e

(Yn) (by Eq. (D.4))

(i)

≤ (n+ 1)‖P‖2op

∑
j≥d k

n+1 e

σj(Λ) + (n+ 1)
∑

j≥d k
n+1 e

σj(Yn) (D.7)

≤ (n+ 1)‖P‖2op

∑
j≥d k

n+1 e

σj(Λ) + (n+ 1)tr [Yn]

≤ (n+ 1)‖P‖2op

 ∑
j≥d k

n+1 e

σj(Λ) + (1− ‖P‖−1
op )ntr [Λ]

 , (by Eq. (D.6))

concluding the proof. Here, in inequality (i), we used that summing over the indices d j
n+1ej for j ≥ k sums

over only indices j′ ≥ d k
n+1e, and includes each such index at most n times.

To see why the last statement holds, for a := (n+ 1)dλ/(2‖P‖op), by the first statement,

σa(Σ) ≤ ‖P‖2op

(
σdλ/(2‖P‖op)

(Λ) + exp(−n ‖P‖−1
op ) ‖Λ‖op

)
.

By definition of dλ, ‖P‖2op σdλ/(2‖P‖op)
(Λ) ≤ λ/2 and for n ≥ ‖P‖op log(2tr [Λ] .λ) the second term is also

smaller than λ/2. Hence dλ(Σ) is at most (n+ 1)dλ/(2‖P‖2op)(Λ).

D.4 Frechet Differentiability
Definition D.1. Let Bop denote the Banach space consisting of all operator-norm bounded operators on
Hx, and let Sop denote the subspace of self-adjoint bounded operators on Hx.

Lemma D.16. Let X ∈ Bop have spectral radius ρ(X) < 1, and for Y ∈ Sop, define TX [Y ] = Y −XHY X.
Then, TX [·] is a bounded linear operator on Sop, and has an inverse which is also bounded. Hence, the
solution to TX [Y ] = Q is bounded for any Q ∈ Sop, and given by dlyap (X, Q).

Definition D.2 (Frechet Derivative). Let B1,B2 be a banach space with norms ‖ · ‖B1
and ‖ · ‖B2

. Given
a subset U ⊂ B1 , we say f : U → B2 is Frechet Differentiable at x ∈ B1 if there exists linear mapping
Df(x) : B1 → B2 such that

lim
‖h‖B1

→0

‖f(x+ h)−Df(x)[h])‖B2

‖h‖
= 0.

We say that f is Frechet continuously differentriable at x if f is Frechet differentiable in an open neighborhood
about x, and x 7→ Df(x)[h] is a continuous in the dual norm ‖g‖B∗1 := sup‖h‖B=1 g(h).
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An important case is where f(t) : R → B is a curve. In this case, the Frechet Derivative exists if there
exists an f ′(t) such that

lim
ε→0

‖f(t+ ε)− f ′(t)‖B
ε

= 0.

Lemma D.17 (Implicit Function Theorem [Whittlesey, 1965]). Let B1,B2 be a two Banach spaces, and
let f : B1 × B2 → B2 be a continuously Frechet differentiable function at (x0, y0) ∈ B1 × B2. Suppose
that the mapping h2 7→ Df(x0, y0)[0, h2] is a Banach space isopmorphism on B2 (i.e, it admits a a bounded
linear inverse). Then, there exists a neighborhood U around x0 and V around y0 and a Frechet-differentiable
function g : U → V on which g(x) is the unique solution to f(x, g(x)) = 0.

Lemma D.18. Let (A1, B1) and (A2, B2) be two instance, and define the curve A(t) = A1 + t(B2−B1) and
B(t) = B1 + t(B2 −B1). If (A(t), B(t)) is stabilizable for all t ∈ [0, 1],

• P (t) := P∞(A(t), B(t)) is Frechet differentiable on [0, 1] in the operator norm ‖ · ‖op.

• The Frechet derivative of P (t) is given by

P ′(t) = dlyap (Acl(t), E(t)) where E(t) := Acl(t)
HP (t)∆Acl

(t) + ∆Acl
(t)HP (t)Acl(t), (D.8)

where ∆Acl
(t) := (A2 −A1) + (B2 −B1)K∞ (A(t), B(t)).

Proof. The result is the infinite-dimensional analogue of Lemma 3.1 in Simchowitz and Foster [2020]. Define
the function F(t, P ) := R×Sop as

F(t, P ) := A(t)HPA(t)− P +Q−A(t)HPB(t)(R+B(t)HPB(t))−1B(t)HPA(t)

Then, P (t) solves F(t, P ) = 0. One can verify that F(t, P ) is a Frechet continuously differentiable function5

The computation of Lemma 3.1 in Simchowitz and Foster [2020] (carried out now in infinite dimensions)
shows that, {

d

dt
F(t, P ) · (δt) +

d

dP
F(t, P ) · (δP )

} ∣∣
P=P (t)

= TA(t)+B(t)K(t)[δP ] + E(t) · δt,

where K(t) = K∞(A(t), B(t)), and where E(t) is defined in Eq. (D.8), and TX [Y ] = Y − XHY X. Since
(A(t), B(t)) is stabilizable, A(t)+B(t)K(t) is stable and thus TA(t)+B(t)K(t)[·] is a bounded linear operator on
Sop with bounded inverse. It follows from the Lemma D.17 that P (t) admits a Frechet Derivative P ′(t), and
its derivative must TA(t)+B(t)K(t)[δP ] + E(t) = 0. Hence, by Lemma D.16, P ′(t) is given by Eq. (D.8).

Lemma D.19. Let A(t) = A1 + (A2 − A1)t be a curve on [0, 1] with A(t) ∈ Bop stabilizable. Set ∆ =
A2 −A1.Then, t 7→ dlyap (A(t), Σ) is Frechet differentiable in the operator norm, and

d

dt
dlyap (A(t), Σ) = dlyap (A(t), N) (D.9)

where N := ∆Hdlyap (A(t), Σ)A(t) +A(t)Hdlyap (A(t), Σ) ∆.

Proof. Set P (t) := dlyap (A(t), Σ). Recall the operator TX [Y ] = Y −XHY X. Then, P (t) solves F(t, P ) = 0,
where F(t, P ) = T(A(t)[P ] − Σ. It is straightforward to check that F(t, P ) is Frechet continuously differen-
tiable. A direct computation reveals{

d

dt
F(t, P ) · (δt) +

d

dP
F(t, P ) · (δP )

} ∣∣
P=P (t)

= TA(t)[δP ] +N(t) · δt,

5Indeed, the first term in a polynomial in bounded operators, and the second term is a product of surge polynomials, and
the matrix inverse (R + B(t)HPB(t))−1. Since R + B(t)HPB(t) � R � 0 is finite dimensional, one can express perturbations
of (R+B(t)HPB(t))−1 as a convergence series, which can be used to verify continuous differentiability.
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where N(t) is defined in the lemma. Moreover, since A(t) is stabilizable, TA(t) is a bounded linear operator
with bounded inverse (Lemma D.16). Hence, the implicit function theorem (Lemma D.17) shows that P (t)
admits a Frechet Derivative P ′(t), and its derivative must satisfy TA(t)+B(t)K(t)[δP ]+N(t) = 0. Consequently,
by Lemma D.16, P ′(t) is given by Eq. (D.8).

Lemma D.20 (Traces of Derivatives on Sop). Let P (t) : [0, 1]→ Sop be a continuously Frechet-differentiable
curve. Moreover, let Γ be a fixed trace-class operator on Hx. Then,

(a) The function f(t) = tr [ΓP (t)] is a continously differentiable function, with derivative f ′(t) = tr [ΓP ′(t)].

(b) If Γ is also PSD, ∥∥∥Γ1/2(P (1)− P (0))Γ1/2
∥∥∥
tr
≤ max
t∈[0,1]

∥∥∥Γ1/2P ′(t)Γ1/2
∥∥∥
tr
.

(c) Similarly, if Γ is PSD,∥∥∥Γ1/2(P (1)− P (0))Γ1/2
∥∥∥
HS
≤ max
t∈[0,1]

∥∥∥Γ1/2P ′(t)Γ1/2
∥∥∥
HS
.

Proof. For any trace-class Γ, the mapping P 7→ tr [ΓP ] is a bounded linear functional on the space Sop.
Hence, the map commutes with Frechet derivatives, and thus part (a) follows.

To prove part (b), write
∥∥Γ1/2(P (1)− P (0))Γ1/2

∥∥
tr

= maxX:‖X‖=1 tr(XΓ1/2(P (1)−P (0)Γ1/2) = tr(Γ̃(P (1)−
P (0))), where Γ̃ = Γ1/2XΓ1/2. One can check that Γ̃ is also trace class (see, e.g. Dragomir [2014]) and hence
f(t) = tr

[
Γ̃P (t)

]
is a continuously differentiable function by the first part of the lemma, with derivative

f ′(t) = tr
[
Γ̃P ′(t)

]
. Thus, from the mean-value theorem, tr(Γ̃(P (1)− P (0))) = f ′(t) = tr

[
Γ̃P ′(t)

]
for some

t ∈ [0, 1]. Thus, ∥∥∥Γ1/2(P (1)− P (0))Γ1/2
∥∥∥
tr

= max
X:‖X‖op=1

tr
[
Γ1/2XΓ1/2(P (1)− P (0))

]
≤ max
X:‖X‖op=1

max
t∈[0,1]

tr
[
Γ1/2XΓ1/2P ′(t)

]
.

Swapping the maxima and rearranging the trace, we see that the resulting term is just

max
X:‖X‖op=1

max
t∈[0,1]

tr
[
XΓ1/2P ′(t)Γ1/2

]
= max
t∈[0,1]

∥∥∥Γ1/2P ′(t)Γ1/2
∥∥∥
tr
.

The proof of part (c) is nearly identical, except that the constraint on the variational parameter X is
strengthed to ‖X‖HS ≤ 1.
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Part II

Estimation Rates
E Estimating System Operators
In this section, we prove estimation rates for the system operators A?, B? estimated via ridge regression on
data collected under a single trajectory. In particular, throughout this section, as per our definition of the
dynamics in Eq. (1.1), we assume that data {(xt,ut, )}T+1

t=1 is generated according to,

xt+1 = Acl?xt +B?ut + wt,

where ut = K0xt + vt. Here, K0 is a stabilizing controller, vt
i.i.d∼ N (0, σ2

uI), and wT
i.i.d∼ N (0,Σw).

As before, we let Σx,0 := Σ?(K0, σ
2
u) = limt→ E[xt ⊗ xt] = dlyap

(
(A? +B?K0)H, B?B

H
? σ

2
u + Σw

)
be the

stationary state covariance when inputs are chosen according to the exploratory policy above. We define
Acl? := A? +B?K0 and estimate Acl? , B? via two separate regressions:

Âcl := arg min
Acl

1

T

T∑
t=1

1

2
‖xt+1 −Aclxt‖2 +

λ

2
‖Acl‖2HS (E.1)

B̂ := arg min
B

1

T

T∑
t=1

1

2
‖xt+1 −Bvt‖2. (E.2)

The following lemma provides closed form expressions for the estimation error.

Lemma E.1. Let Âcl and B̂ be defined as in Eq. (E.1) and Eq. (E.2), then

Acl? − Âcl = λAcl?

(
1

T

T∑
t=1

xt ⊗ xt + λI

)−1

−

(
1

T

T∑
t=1

(B?vt + wt)⊗ xt

)(
1

T

T∑
t=1

xt ⊗ xt + λI

)−1

B? − B̂ = −

(
T∑
t=1

(Acl?xt + wt)⊗ vt

)(
T∑
t=1

vt ⊗ vt

)−1

.

Proof. For the first statement, by taking the first order optimality conditions for the optimization problem
in (E.1), we have that,

Âcl =

(
Acl?

(
1

T

T∑
t=1

xt ⊗ xt

)
+

1

T

T∑
t=1

(B?vt + wt)⊗ xt

)(
1

T

T∑
t=1

xt ⊗ xt + λI

)−1

.

Subtracting out the following quantity from both sides,

Acl?

(
1

T

T∑
t=1

xt ⊗ xt + λI

)(
1

T

T∑
t=1

xt ⊗ xt + λI

)−1

and multiplying by −1 we get the first identity. The second follows directly from computing the optimality
conditions for (E.2).
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E.1 Estimating B?

We start by presenting the estimation guarantees for B? since they are significantly easier to prove than
those for A?. This is because the covariates vt are independent and finite dimensional.

Proposition E.2 (B estimation). Let T & max
{
du log (du) , du log

(
1
δ

)}
then with probability 1− δ,∥∥∥B? − B̂∥∥∥2

HS
.
du
(
tr [Σx,0] + ‖Σx,0‖HS log

(
du
δ

))
σ2
uT

.

Proof. Using Lemma E.1 we know that the error in estimating B? has the following form, which we can
upper bound as follows,∥∥∥∥∥∥

T∑
t=1

(Acl?xt + wt)⊗ vt

(
T∑
t=1

vt ⊗ vt

)−1
∥∥∥∥∥∥

2

HS

≤ 1

λmin

(∑T
t=1 vt ⊗ vt

)2

∥∥∥∥∥
T∑
t=1

(Acl?xt + wt)⊗ vt

∥∥∥∥∥
2

HS

.

Upper bounding Hilbert-Schmidt norm Focusing on the Hilbert-Schmidt norm term, we let e1 . . . edu
be the standard basis for Rdu . Then, we can expand the Hilbert Schmidt norm as,∥∥∥∥∥

T∑
t=1

(Acl?xt + wt)⊗ vt

∥∥∥∥∥
2

HS

=

du∑
i=1

‖
T∑
t=1

(Acl?xt + wt) 〈vt, ei〉 ‖2︸ ︷︷ ︸
:=Ei

. (E.3)

Now, we deal with each Ei individually. To do so, we notice that
∑T
t=1 (Acl?xt + wt) 〈vt, ei〉 is a mean zero

gaussian vector in Hx with covariance operator equal to,

E

 T∑
j,k=1

(Acl?xj + wj)⊗ (Acl?xk + wk)
H 〈vj , ei〉 〈vk, ei〉

 =

T∑
t=1

(
Acl?E[xt ⊗ xt]A

H
cl? + Σw

)
σ2
u

� σ2
uT · Σx,0.

The first equality follows from the fact that for j 6= k, 〈vj , ei〉 and 〈vk, ei〉 are independent and both mean
zero. Therefore, only the diagonal terms remain and by definition of vt, E 〈vt, ei〉2 = σ2

u for all i and t. The
upper bound in the second line is a consequence of the fact that, by definition of the dynamics and dlyap,
E [xt ⊗ xt] � Σx,0. Moreover, since Σx,0 is the solution to a Lyapunov equation,

Acl?Σx,0A
H
cl? = Σx,0 − Σw − σ2

uB?B
H
? ,

the Σw cancel out. Now, by applying the Hanson-Wright inequality (Lemma E.8), with probability 1 − δi,
Ei is upper bounded by,

2Tσ2
u · tr [Σx,0] + 5Tσ2

u · log(1/δi) ‖Σx,0‖HS .
Letting δi = 1

2du
δ, we get that with probability, 1− δ/2, the expression in (E.3) is less than or equal to

5duTσ
2
u ·
(

tr [Σx,0] + log

(
2du
δ

)
‖Σx,0‖HS

)
.

Lower bounding minimum eigenvalue To finish off the proof, we lower bound the minimum eigenvalue
of
∑T
t=1 vt ⊗ vt. Recall that vt

i.i.d∼ N (0, σ2
uI) for all t. Hence, by Lemma E.9 (and our lower bound on T ),

with probability 1− δ/2,

λmin

(
n∑
i=1

vi ⊗ vi

)2

≥ (9/1600)2T 2σ4
u.

Here, we have used that M , as defined in Lemma E.9, is upper bounded by σ2
udu and that σmin(σ2

uI) = σ2
u.
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Wrapping up Putting everything together, with probability 1− δ, for T larger than the stated threshold,∥∥∥B? − B̂∥∥∥2

HS
.
du
(
tr [Σx,0] + log

(
du
δ

)
‖Σx,0‖HS

)
σ2
uT

.

E.2 Estimating A?

For this subsection, we define the following the following quantities to simplify our notation,

Σ̂x,0 :=
1

T

T∑
t=1

xt ⊗ xt

Vλ := {q ∈ Hx : 〈q,Σx,0q〉 ≥ λ}

t0 := c0 ‖P0‖op log+

(
λ−1 ‖P0‖2op ‖Σ0‖op

)
,

where P0 := P∞(K0;A?, B?) and c0 is a universal constant.
Let Sλ denote the orthogonal projection operator onto the subspace Vλ. Similarly, let Sλ denote the

projection operator onto the orthogonal complement of Vλ. Recall our definition of Σ0 := B?B
H
? σ

2
u + Σw.

Lastly, we will make extensive reference to dλ and Ctail,λ as defined in Theorem 3.1. In particular, if we let
(σj)

∞
j=1 = (σj(Σx,0))∞j=1 be the eigenvalues of Σx,0 then,

dλ := |{σj : σj ≥ λ}|, Ctail,λ := 1
λ

∑
j>dλ

σj .

Lastly, recall A? := A? +B?K0.

Proposition E.3 (A estimation). Let T be such that

T & max
{
dλ log+

(
tr [Σx,0]λ−1

)
, dλ log+ (1/δ)

}
+ ‖P0‖op log+

(
λ−1 ‖P0‖2op ‖Σ0‖op

)
.

Then, with probability 1− δ,∥∥∥(Âcl −Acl?)Σ
1/2
x,0

∥∥∥2

HS
. λ ‖Acl?‖

2
HS +

Wtr

T
(dλ + Ctail,λ) log+

(
tr [Σx,0]

δλ

)
.

Furthermore, the above guarantee holds for any Acl equal to

Acl := arg min
Acl∈B

〈
(Acl − Âcl), (Σ̂x,0 + λI)(Acl − Âcl)

〉
,

where B is a compact and convex set containing Acl? .

Proof. Using the identity from Lemma E.1,

(Acl? − Âcl)

(
1

T

T∑
t=1

xt ⊗ xt + λI

)1/2

= λAcl?

(
1

T

T∑
t=1

xt ⊗ xt + λI

)−1/2

−

(
1

T

T∑
t=1

(B?vt + wt)⊗ xt

)(
1

T

T∑
t=1

xt ⊗ xt + λI

)−1/2

.

Taking the Hilbert-Schmidt norm of both sides, we get that∥∥∥∥∥∥(Acl? − Âcl)

(
1

T

T∑
t=1

xt ⊗ xt + λI

)1/2
∥∥∥∥∥∥

2

HS
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is less than or equal to,

2

∥∥∥∥∥∥λAcl?

(
1

T

T∑
t=1

xt ⊗ xt + λI

)−1/2
∥∥∥∥∥∥

2

HS︸ ︷︷ ︸
N1

+2

∥∥∥∥∥∥
(

1

T

T∑
t=1

(B?vt + wt)⊗ xt

)(
1

T

T∑
t=1

xt ⊗ xt + λI

)−1/2
∥∥∥∥∥∥

2

HS︸ ︷︷ ︸
N2

.

Since projections onto convex sets are non-expansive, incorporating a projection step as in the definition of
Acl, doesn’t change the above guarantee since∥∥∥∥(Acl? −Acl)

(
Σ̂x,0 + λI

)1/2
∥∥∥∥2

HS

≤
∥∥∥∥(Acl? − Âcl)

(
Σ̂x,0 + λI

)1/2
∥∥∥∥2

HS

.

Bounding the bias Next, we bound each of these terms separately. For the first, we have that,

N1 ≤ λ ‖Acl?‖
2
HS .

Bounding the noise For the second term, we apply Lemma E.4, to get that with probability 1− δ/2,

N2 ≤
1

T

∥∥∥∥∥∥
(

T∑
t=1

(B?vt + wt)⊗ xt

)(
T∑
t=1

xt ⊗ xt + λI

)−1/2
∥∥∥∥∥∥

2

HS

.
1

T
Wtr · (dλ + Ctail,λ) log+

(
tr [Σx,0]

δλ

)
.

Therefore, with probability 1− δ/2,∥∥∥(Âcl −Acl?)(Σ̂x,0 + λI)1/2
∥∥∥2

HS
. λ ‖Acl?‖

2
HS +

1

T
Wtr · (dλ + Ctail,λ) log+

(
tr [Σx,0]

δλ

)
. (E.4)

Now, since we have chosen T to be large enough, we apply Proposition E.6 to get that with probability
1− δ/2

Σx,0 � c · (Σ̂x,0 + λI)

where c is a universal constant. This finishes the proof since,∥∥∥(Âcl −Acl?)Σ
1/2
x,0

∥∥∥2

HS
= tr

[
(Âcl −Acl?)Σx,0(Âcl −Acl?)

]
≤ c · tr

[
(Âcl −Acl?)(Σ̂x,0 + λI)(Âcl −Acl?)

]
= c ·

∥∥∥(Âcl −Acl?)(Σ̂x,0 + λI)1/2
∥∥∥2

HS
.

The final result then follows by applying a union bound and combining this last inequality with (E.4).

Lemma E.4. The following inequality holds with probability 1− δ,∥∥∥∥∥∥
T∑
t=1

(B?vt + wt)⊗ xt

(
T∑
t=1

xt ⊗ xt + λT · I

)−1/2
∥∥∥∥∥∥

2

HS

.Wtr · log+

(
tr [Σx,0]

δλ

)
(dλ + Ctail,λ)
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Proof. Define zt := B?vt + wt. Note that zt
i.i.d∼ N (0,Σ0), where Σ0 is again defined as,

Σ0 = B?B
H
? σ

2
u + Σw.

Now, let
∑∞
j=1 qj ⊗ qj · σj be the eigendecomposition of this linear operator Σ0 where the qj form an

orthonormal basis of Hx. By definition of the Hilbert-Schmidt norm,∥∥∥∥∥∥
T∑
t=1

zt ⊗ xt

(
T∑
t=1

xt ⊗ xt + λT · I

)−1/2
∥∥∥∥∥∥

2

HS

=

∞∑
j=1

‖

(
T∑
t=1

xt ⊗ xt + λT · I

)−1/2 T∑
t=1

xt 〈zt,qj〉 ‖2︸ ︷︷ ︸
:=Ej

. (E.5)

Due to our choice of basis, we have that 〈zt,qj〉 is a zero-mean sub-Gaussian random variable with sub-
Gaussian parameter σj . In particular, since the zt are drawn i.i.d from N (0,Σ0), we have that for all
γ ∈ R,

E exp(γ 〈qj , zt〉) = exp

(
γ2

2
〈Σ0qj ,qj〉

)
= exp

(
γ2

2
σj

)
.

Self-normalized inequality Using this decompostion, we can bound each Ej via a self-normalized mar-
tingale bound for vectors in Hilbert space. In particular by Lemma E.10, with probability 1− δj ,

Ej ≤ 2σj log

det
(
I + 1

λT

∑T
t=1 xt ⊗ xt

)1/2

δj


= σj log det

(
I +

1

λT

T∑
t=1

xt ⊗ xt

)
+ 2σj log(1/δj).

Setting δj = 3
π2 j
−2 · δ, with probability 1− δj , Ej has the following upper bound,

Ej ≤ σj log det

(
I +

1

λT

T∑
t=1

xt ⊗ xt

)
+ 2σj log

(
π2

3δ

)
+ 4σj log(j).

Using a union bound and summing up over all j, we get that with probability 1−
∑∞
j=1 δj = 1− δ/2,∥∥∥∥∥∥

T∑
t=1

zt ⊗ xt

(
T∑
t=1

xt ⊗ xt + λT · I

)−1/2
∥∥∥∥∥∥

2

HS

≤

(
log det

(
I +

1

λT

T∑
t=1

xt ⊗ xt

)
+ 2 log

(
π2

3δ

)) ∞∑
j=1

σj

+ 4

∞∑
j=1

σj log(j).

Bounding log determinant & simplifying Lastly, we can apply Lemma E.5, to conclude that with
probability 1− δ/2,

log det

(
I +

1

λT

T∑
t=1

xt ⊗ xt

)
. dλ log

(
1 + tr [Σx,0]

2

δλ

)
+ λ−1 log+(1/δ) · tr

[
SλΣx,0Sλ

]
.

Now using the fact that
∑∞
j=1 σj = tr

[
B?B

H
? σ

2
u + Σw

]
= tr [Σ0], the target quantity is less than or equal to

a universal constant times:

tr [Σ0]

(
dλ log

(
1 + tr [Σx,0]

2

δλ

)
+ λ−1 log+(1/δ) · tr

[
SλΣx,0Sλ

]
+ log

(
π2

3δ

))
+Wtr.
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Furthermore, by definition of Wtr, tr [Σ0] ≤ Wtr. A short calculation shows this above satisfies,

.Wtr · log+

(
tr [Σx,0]

δλ

)
(dλ + Ctail,λ) .

Lemma E.5. With probability 1− δ,

log

(
det

(
I +

1

λT

T∑
t=1

xt ⊗ xt

))
≤ dλ log

(
1 + tr [Σx,0]

2

δλ

)
+ 7λ−1 log+(2/δ) · tr

[
SλΣx,0Sλ

]
.

Proof. Let
∑∞
i=1 qi⊗qi ·σi be the eigendecomposition of 1

λT

∑T
t=1 xt⊗xt and recall the following definitions.

Vλ = {z ∈ Hx : 〈z,Σx,0z〉 ≥ λ}
dλ = dim(Vλ).

Partitioning the spectrum We recall that for any self-adjoint, PSD linear operator M , det(M) is equal
to the product Π∞i=1σi of the eigenvalues {σi}∞i=1 of M . Therefore, log det(M) is equal to

∑
log(σi) and

log det(I +M) =
∑

log(1 + σi). Using this identity, we now bound our target quantity as,

log

(
det

(
I +

1

λT

T∑
t=1

xt ⊗ xt

))
=

∞∑
i=1

log(1 + σi)

=
∑

i:qi∈Vλ

log(1 + σi) +
∑

i:qi /∈Vλ

log(1 + σi)

≤ dλ log

(
1 +

∞∑
i=1

σi

)
+

∑
i:qi /∈Vλ

σi

= dλ log

(
1 + tr

[
1

λT

T∑
t=1

xt ⊗ xt

])
+ tr

[
Sλ

1

λT

T∑
t=1

xt ⊗ xtSλ

]
.

To go from the second to the third line, we used the inequality log(1 + x) ≤ x for all x ≥ 0 and the fact
that dim(Vλ) = dλ. In the last line, we have used definition of Sλ as a projection operator. In further detail,∑

i:qi∈Vλ

log(1 + σi) ≤ dλ log(1 + σ1) ≤ dλ log

(
1 +

∞∑
i=1

σi

)
.

Bounding the top Now, by Markov’s inequality, with probability 1− δ/2,

tr

[
1

λT

T∑
t=1

xt ⊗ xt

]
≤

2
∑T
t=1 E[xt ⊗ xt]

λδ · T
≤ tr [Σx,0]

2

δλ
.

Bounding the tail Define x̃ as,

x̃ =

Sλx1

Sλx2

. . .

 .
Then,

tr

[
Sλ

1

λT

T∑
t=1

xt ⊗ xtSλ

]
=

1

λT

T∑
t=1

‖Sλxt‖2 =
1

λT
‖x̃‖2,

58



where the last norm is taken in the relevant Hilbert space. Now, we notice that x̃ is a zero mean Gaussian.
Furthermore, the trace norm of its covariance operator can be upper bounded as follows,

Etr [x̃⊗ x̃] =

T∑
t=1

E
[
tr
[
Sλxt ⊗ xtSλ

]]
� T · tr

[
SλΣx,0Sλ

]
.

Therefore, we can apply the Hanson-Wright inequality (Lemma E.8) to conclude that with probability 1−δ/2,

tr

[
Sλ

1

λT

T∑
t=1

xt ⊗ xtSλ

]
≤ 2λ−1tr

[
SλΣx,0Sλ

]
+ 5λ−1 log(2/δ)tr

[
SλΣx,0Sλ

]
≤ 7λ−1 log+(2/δ)tr

[
SλΣx,0Sλ

]
.

Finishing the proof In conclusion, by combining the previous parts, we get that with probability 1− δ,

log

(
det

(
I +

1

λT

T∑
t=1

xt ⊗ xt

))
≤ dλ log

(
1 + tr [Σx,0]

2

δλ

)
+ 7λ−1 log+(2/δ) · tr

[
SλΣx,0Sλ

]
.

Proposition E.6. For t0 and dλ defined as in introduction to Appendix E.2, if

T − t0 & max

{
dλ log+

(
tr [Σx,0]

λ

)
, dλ log+ (1/δ)

}
then with probability 1− δ,

Σx,0 � c ·
(

Σ̂x,0 + λI
)

where c is a universal constant.

Proof. Recall our definition of Vλ as the subspace of Hx corresponding to the directions where the state
covariance Σx,0 has large eigenvalues,

Vλ = {q : 〈q,Σx,0q〉 ≥ λ} .

Furthermore, we review the definitions of Sλ, the orthogonal projection operator onto the subspace Vλ, and
Sλ, the orthogonal projection operator on the complement of Vλ. Since Σx,0 is a trace class operator, Vλ is
a finite dimensional subspace. Therefore, dλ = dim(Vλ) <∞.

For any vector z ∈ Hx, we have that,

〈z,Σx,0z〉 ≤ 2 〈Sλz,Σx,0Sλz〉+ 2
〈
Sλz,Σx,0Sλz

〉
≤ 2 〈Sλz,Σx,0Sλz〉+ 2λ.

In order to complete the proof, it suffices to show that,

SλΣx,0Sλ � c · SλΣ̂x,0Sλ.

In short, we have reduced the proof to showing a PSD upper bound for finite dimensional operators. By
Lemma E.7, for t ≥ t0, we have that Sλxt ∼ N (0,Σt) for Σt � λ

2 I. Therefore, for T − t0 greater than the
lower bound in the statement of the proposition, we can apply Lemma E.9, to conclude that with probability
1− δ,

SλΣ
1/2
x,0Sλ � c · SλΣ̂x,0Sλ.

This concludes the proof.
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Lemma E.7. For t ≥ t0, SλE [xt ⊗ xt]Sλ � λ
2 I, where I ∈ Rdλ×dλ .

Proof. Let v ∈ Vλ be a unit vector. Then, by definition of Vλ, 〈v,Σx,0v〉 ≥ λ. Furthermore, by properties
of the dynamical system,

E [xt ⊗ xt] =

t−2∑
j=0

Ajcl?

(
B?B?σ

2
u + Σw

) (
Ajcl?

)H
.

Before moving on, we recall the form of the steady-state covariance operator Σx,0,

Σx,0 = dlyap
(
AH

cl? , B?B?σ
2
u + Σw

)
=

∞∑
j=0

Ajcl?

(
B?B?σ

2
u + Σw

) (
Ajcl?

)H
.

By the previous two equations, we have that:

〈v,Σx,0v〉 − 〈v,Ext ⊗ xtv〉 =

〈
v,

∞∑
j=t−1

Ajcl?

(
B?B?σ

2
u + Σw

) (
Ajcl?

)H
v

〉
.

Therefore for any v ∈ Vλ,

〈v,Ext ⊗ xtv〉 = 〈v,Σx,0v〉 −

〈
v,

∞∑
j=t−1

Ajcl?

(
B?B?σ

2
u + Σw

) (
Ajcl?

)H
v

〉

≥ λ−

〈
v,

∞∑
j=t−1

Ajcl?

(
B?B?σ

2
u + Σw

) (
Ajcl?

)H
v

〉
.

To finish the proof, we show that for any v ∈ Vλ, the second term is no smaller than −λ/2. To do so, we
proceed as in Lemma D.11. Recall that B?B?σ2

u + Σw = Σ0,〈
v,

∞∑
j=t−1

Ajcl?

(
B?B?σ

2
u + Σw

) (
Ajcl?

)H
v

〉
≤
∥∥B?B?σ2

u + Σw

∥∥
op

∞∑
j=t−1

∥∥∥Ajcl?
(AH

cl?)j
∥∥∥

op

= ‖Σ0‖op

∞∑
j=t−1

∥∥∥(AH
cl?)jAjcl?

∥∥∥
op

≤ ‖Σ0‖op

∞∑
j=t−1

∥∥∥(AH
cl?)jP0A

j
cl?

∥∥∥
op

≤ ‖Σ0‖op ‖P0‖op

∞∑
j=t−1

(1− ‖P0‖−1
op )j

= ‖Σ0‖op ‖P0‖2op (1− ‖P0‖−1
op )t−1

≤ ‖Σ0‖op ‖P0‖2op exp

(
− (t− 1)

‖P0‖op

)
.

The fourth inequality follows from applying Lemma D.9. For t ≥ 1 + d‖P0‖op log
(

2
λ ‖P0‖2op ‖Σ0‖op

)
e, the

expression above is smaller than λ
2 . Lastly, we note that since ‖P0‖op > 1,

t0 := 3 ‖P0‖op log+

(
2

λ
‖P0‖2op ‖Σ0‖op

)
≥ 1 +

⌈
‖P0‖op log

(
2

λ
‖P0‖2op ‖Σ0‖op

)⌉
.
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E.3 Formal Statement and Proof of Proposition 3.1
Proposition 3.1. Assume that Assumption 3 holds, and define ∆r := 1

16C
2
stable − s2

r+1, λsafe := c∆r

ρ , where
ρ, r are defined as in Assumption 3 and c is a universal constant. Then, for T ≥ Tinit, and (A0, B0) computed
as in the WarmStart algorithm, with probability 1− δ

max
{
‖A0 −A?‖op , ‖B0 −B?‖op

}
≤ 1

2
Cstable.

Here, Pinit = P∞(Kinit;A?, B?), Σx,init := Σ?(Kinit, σ
2
u), and Tinit is equal to a universal constant times the

maximum of the following three quantities,

a) dλsafe
log+

(
tr[Σx,init]
δλsafe

)
+ ‖Pinit‖op log+

(
1
λsafe
‖Pinit‖2op

∥∥B?BH
? σ

2
u + Σw

∥∥
op

)
b) Wtr

λsafe∆r
log+

(
tr[Σx,init]
δλsafe

)
(dλsafe

+ Ctail,λsafe
)

c) max{1, ‖Kinit‖2op} ·
du(tr[Σx,init]+‖Σx,init‖HS log( duδ ))

σ2
uC2stable

.

Proof. The overall proof strategy is to show there exists a threshold such that the error in both A? and B?
is small. We deal with operator error separately. Assume Âcl, A0, and B0 are computed as in WarmStart
(see Appendix F). Furthermore, redefine Acl? := A? +B?Kinit.

B? recovery This part is simple since we have consistent parameter recovery for B?. Recalling Proposi-
tion E.2, the following statement holds with probability 1− δ/2,

‖B? −B0‖2HS .
du
(
tr [Σx,init] + ‖Σx,init‖HS log

(
du
δ

))
σ2
uT

.

Since Tinit & max{1, ‖Kinit‖2op}
du(tr[Σx,init]+‖Σx,init‖HS log( duδ ))

σ2
uC2stable

we have that with probability 1− δ/2,

‖B? −B0‖HS ≤
1

4 max{1, ‖Kinit‖op}
Cstable.

A? recovery In order to guarantee a close estimate of A?, we use the error decomposition from Lemma E.1
and show that this quantity is small in operator norm if the alignment condition holds. For the sake of
making notation concise, we let,Σ̂x,init := 1

T

∑T
t=1 xt ⊗ xt and Acl? = A? + B?Kinit. From our earlier error

decomposition,

∥∥∥Âcl −Acl?

∥∥∥2

op
=

∥∥∥∥∥λAcl?

(
Σ̂x,init + λI

)−1

−

(
1

T

T∑
t=1

(B?vt + wt)⊗ xt

)(
Σ̂x,init + λI

)−1
∥∥∥∥∥

2

op

≤ 2

∥∥∥∥λAcl?

(
Σ̂x,init + λI

)−1
∥∥∥∥2

op︸ ︷︷ ︸
:=N1

+2

∥∥∥∥∥
(

1

T

T∑
t=1

(B?vt + wt)⊗ xt

)(
Σ̂x,init + λI

)−1
∥∥∥∥∥

2

HS︸ ︷︷ ︸
:=N2

.

Bounding the noise The bound on N2 follows a simple application of Lemma E.4.∥∥∥∥∥
(

1

T

T∑
t=1

(B?vt + wt)⊗ xt

)(
Σ̂x,init + λI

)−1
∥∥∥∥∥

2

HS

≤ 1

λT 2

∥∥∥∥∥
(

T∑
t=1

(B?vt + wt)⊗ xt

)(
Σ̂x,init + λI

)−1/2
∥∥∥∥∥

2

HS

≤ 1

λT

∥∥∥∥∥
(

T∑
t=1

(B?vt + wt)⊗ xt

)(
T Σ̂x,init + λTI

)−1/2
∥∥∥∥∥

2

HS

.
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Applying Lemma E.4, we get that with probability 1− δ/4,

N2 .
Wtr

λT
· log+

(
tr [Σx,init]

δλ

)
(dλ + Ctail,λ) .

Bounding the bias The bound on N1 follows from the alignment condition. In order to apply it, we first
perform the following simplification of the bias term.∥∥∥∥λAcl?

(
Σ̂x,init + λI

)−1
∥∥∥∥2

op

≤ λ

∥∥∥∥Acl?

(
Σ̂x,init + λI

)−1/2
∥∥∥∥2

op

= λ

∥∥∥∥(Σ̂x,init + λI
)−1/2

AH
cl?Acl?

(
Σ̂x,init + λI

)−1/2
∥∥∥∥

op

. (E.6)

As in the alignment condition, we let U(Λr + Λ/r)V
H be the SVD of Acl? . Therefore, AH

cl?
Acl? is equal to

V (Λ2
r + Λ2

/r)V
H. Applying the triangle inequality, we can then bound (E.6) by,

λ

∥∥∥∥(Σ̂x,init + λI
)−1/2

V Λ2
rV

H
(

Σ̂x,init + λI
)−1/2

∥∥∥∥
op

+ λ

∥∥∥∥(Σ̂x,init + λI
)−1/2

V Λ2
/rV

H
(

Σ̂x,init + λI
)−1/2

∥∥∥∥
op

.

(E.7)

We can bound the second term above by ‖Λ2
/r‖op = s2

r+1. Next, we have chosen Tinit large enough so that
Σ̂x,init + λI is a PSD upper bound on Σx,init as per Proposition E.6. Together with the alignment condition,
we have that with probability 1− δ/4,

V Λ2
rV

H � ρΣx,init � c · ρ(Σ̂x,init + λI),

for some universal constant c. This implies that,(
Σ̂x,init + λI

)−1/2

V Λ2
rV

H
(

Σ̂x,init + λI
)−1/2

� cρI,

and hence the first term in Eq. (E.7) is smaller than c · λρ. Putting everything together, we get that with
probability 1− δ/4, N1 is less than or equal to cρλ+ s2

r+1. Therefore, with probability 1− δ/2,∥∥∥Âcl −Acl?

∥∥∥2

op
≤ c0

Wtr

λT
· log+

(
tr [Σx,init]

δλ

)
(dλ + Ctail,λ) + c1ρλ+ s2

r+1. (E.8)

Now, we let ∆r := 1
16C

2
stable − s2

r+1 which is strictly great than 0 by Assumption 3. Setting λ = λsafe := c′∆r

ρ

for some universal constant c′, we have that c1ρλ ≤ 1
2∆r. Furthermore, for T such that,

T &
Wtr

λsafe∆r
log+

(
tr [Σx,0]

δλsafe

)
(dλsafe

+ Ctail,λsafe
) ,

the first term in Eq. (E.8) is less than or equal to ∆r/2 and hence ‖Âcl − Acl?‖2op ≤ 1
16C

2
stable. Computing

A0 = Âcl −B0Kinit, we get that:

‖A0 −A?‖op =
∥∥∥(Âcl −B0Kinit)±Acl? −A?

∥∥∥
op

≤
∥∥∥Âcl −Acl?

∥∥∥
op

+ ‖(B? −B0)Kinit‖op

≤ 1

2
Cstable.

This concludes the proof.
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E.4 Estimation Lemmas
Lemma E.8 (Theorem 2.6 in Chen and Yang [2021]). Let vi ∈ Hx be independent random vectors in a
Hilbert space Hx such that vi ∼ N (0,Σi) and Σi � Σ for all i. Then,

P

[
n∑
i=1

‖vi‖2 ≥ 2ntr [Σ] + 5t ‖Σ‖HS

]
≤ exp (−t)

Proof. The lemma is a restatement of Theorem 2.6 in Chen and Yang [2021]. Since the vi are Gaussians,
the inequality immediately following Equation 4.2 in the proof of Theorem 2.6 in Chen and Yang [2021] can
be restated as,

P

[
n∑
i=1

‖vi‖2 ≥ ntr [Σ] + t

]
≤ exp

(
−λt+ 2nλ2 ‖Σ‖2HS

)
for all 0 ≤ λ <

1

4 ‖Σ‖op

.

Since ‖Σ‖op ≤ ‖Σ‖HS, if we set λ = (5 ‖Σ‖HS)−1, we get that

P

[
n∑
i=1

‖vi‖2 ≥ ntr [Σ] + t

]
≤ exp

(
− t

5 ‖Σ‖HS
+

2

25
n

)
.

Lastly, setting −t′ = − t
5‖Σ‖HS

+ 2
25n,

P

[
n∑
i=1

‖vi‖2 ≥ ntr [Σ] + 5t′ ‖Σ‖HS +
2

5
n ‖Σ‖HS

]
≤ exp (−t′) .

The proof follows since ‖Σ‖HS ≤ tr [Σ].

Lemma E.9 (Lemma E.4 in Simchowitz and Foster [2020]). Let Ft be a filtration such that zt | Ft−1 ∼
N (0,Σ

t
) where Σt ∈ Rd×d is Ft−1-measurable, and Σt � Σ. Furthermore, assume that

E tr

[
1

T

T∑
t=1

zt ⊗ zt

]
≤ M.

Then for,

T ≥ 223 max

{
2d log(

100

3
) + d log

(
M

λmin(Σ)

)
, (d+ 1) log

(
2

δ

)}
,

with probability 1− δ,
1

T

T∑
t=1

zt ⊗ zt �
9

1600
Σ.

Lemma E.10 (Corollary 3.6 in Abbasi-Yadkori [2012]). Let (Fk, k ≥ 1) be a filtration and let (mk, k ≥ 1)
be an Hx-valued stochastic process adapted to Fk, and (ηk, k ≥ 2) be a real valued martingale difference
process adapted to Fk. Furthermore, assume that ηk is conditionally sub-Gaussian in the sense that there
exists a σ > 0 such that, E [exp(ηkγ)] ≤ exp

(
γ2σ/2

)
for all γ ∈ R. Consider the martingale and operator-

valued processes,

St :=

t∑
k=1

ηk+1 ·mk, Vt :=

t−1∑
k=1

mk ⊗mk, V t := λI + Vt for t ≥ 0.

Then, for any δ ∈ (0, 1) with probability 1− δ,

∀t ≥ 2, ‖V −1/2

t St‖ ≤ 2σ log

(
det(I + λ−1Vt)

δ

)
.
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Part III

Regret Bounds
F Algorithm Descriptions: OnlineCE and WarmStart
Below, we let B := {Acl : ‖Acl − (A0 +B0K0)‖op ≤ .5Cstable} denote an operator norm ball around the
warm start estimate A0 + B0K0 and let Σ̂x,0 = T−1

∑T
t=1 xt ⊗ xt be the empirical state covariance. The

precise description of Texp and λ may be found in the proof of Theorem 3.1.

OnlineCE

Input: Warm start estimates (A0, B0), confidence δ, horizon length T

1. Synthesize controller K0 = K∞(A0, B0)

2. Collect data under exploration policy

For t = 1, 2, . . . , Texp :

• Observe state xt

• Choose input ut = K0xt + vt where vt ∼ N (0, I)

3. Estimate B?

B̂ = arg min
B

Texp∑
t=1

1

2Texp
‖xt+1 −Bvt‖2Hx

4. Estimate A?
(a) Compute initial estimate via ridge regression

Ãcl := arg minAcl

1
Texp

∑Texp

t=1
1
2 ‖xt+1 −Aclxt‖2Hx

+ λ
2 ‖Acl‖2HS

(b) Project to safe set

Âcl := arg min
Acl∈B

〈
(Acl − Ãcl), (Σ̂x,0 + λI)(Acl − Ãcl)

〉
(c) Refine estimate

Â := Âcl − B̂K0

5. Synthesize certainty equivalence controller K̂ = K∞(Â, B̂)

6. Choose inputs according to K̂ for remainder of horizon.

For t = Texp + 1, . . . , T :

• Observe state xt

• Choose input ut = K̂xt
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WarmStart

Input: Initial controller Kinit which stabilizes (A?, B?).

1. Collect data under exploration policy

For t = 1, 2, . . . , Tinit :

• Observe state xt

• Choose input ut = K0xt + vt where vt ∼ N (0, I)

2. Estimate B?

B0 = arg min
B

Texp∑
t=1

1

2Texp
‖xt+1 −Bvt‖2Hx

3. Estimate A?
(a) Compute initial estimate via ridge regression

Âcl := arg minAcl

1
Texp

∑Texp

t=1
1
2 ‖xt+1 −Aclxt‖2Hx

+ λsafe

2 ‖Acl‖2HS

(b) Refine estimate: A0 = Âcl −B0Kinit.

F.1 Incorporating Data Dependent Conditions for WarmStart

Let P0 := P∞(A0, B0) denote the optimal value function of the initial estimate (A0, B0). From our pertur-
bation bounds on the solution to the DARE (Proposition C.3), we have that if

εop,0 := max{‖A0 −A?‖op , ‖B0 −B?‖op} ≤ η/(16(1 + η)4 ‖P∞(A0, B0)‖3op ,

for some parameter η ∈ (0, 1), then ‖P?−P0‖op ≤ η‖P0‖op. By choosing η sufficiently small, we can see that
that if εop,0 ≤ 1

c1‖P0‖3op
, then the warm start condition Condition 2.1 holds. Hence, by modifying constants,

we can replace Cstable in the warm-start condition with a data-dependent condition εop,0 ≤ 1
c1‖P0‖3op

(for
constant c1), which depends only on the value function of the initial estimate. One can can show that this
condition is guaranteed to be met as soon as εop,0 ≤ 1

c2‖P?‖3op
, which means that the data-dependent warm

start condition does not significantly alter what is required from the alignment condition.

F.2 Implementation via Representer Theorems
In the case where the states xt are infinite dimensional feature mappings equal to φ(yt), where φ is a kernel
and yt is a finite dimensional observation, we can employ standard representer theorem arguments for kernel
ridge regression in order to efficiently implement the algorithms above. More specifically, the estimates Â
and B̂ can be represented via outer products of the data points (xt,vt).

Furthermore, since inputs are finite dimensional, we can compute inverses and solve the Riccati equation
by iterating the finite horizon version until convergence (see discussion in Fazel et al. [2018], Appendix A).
That is, for P1 = Q, Hewer [1971] shows that the following fixed point iteration is contractive and that
P∞(A,B) is equal to the limit of,

Pt+1 = Q+AHPtA−AHPtB(R+BHPtB)−1BHPtA.
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Having solved the Riccati equation, we can then compute controller by taking products of linear operators,
for which we have tractable representations.

G Regret Bounds
For the sake of the analysis in this section, we define the quantity RegretT (A, z) as the regret incurred by
the algorithm A over T time steps starting from (a possibly random) initial state z.

Lemma G.1. Let A be an algorithm that chooses actions according to ut = Kxt + vt for vt ∼ N (0, σ2
uI)

and let z ∼ N (0,Σz) with ‖Σz‖op ≤ Bz. Then, with probability 1− δ, RegretT (A, z) is less than or equal
to,

7 log+(2/δ)
(
T
(
σ2
utr [R] + tr

[
Q0dlyap

(
AH

cl, Σw +B?B
H
? σ

2
u

)])
+Bztr [P∞(K;A?, B?)]

)
− TJ?,

where Q0 := Q+KHRK and Acl := A? +B?K.

Proof. By definition, the regret of the algorithm is equal to:

T∑
t=1

〈
xt, (Q+KHRK)xt

〉
+ 〈vt, Rvt〉 − TJ?. (G.1)

The lemma follows from first showing that the relevant random variables concentrate around their expecta-
tions and then upper bounding these expectations.

Bounding exploration cost Using the Hanson-Wright inequality (Lemma E.8), we argue that with
probability 1− δ/2, since vt

i.i.d∼ N (0, σ2
uI),

T∑
t=1

〈vt, Rvt〉2 = ‖R1/2vt‖2 ≤ 7σ2
uT log+(2/δ)tr [R] .

More precisely, we have applied Hanson-Wright to the series of random variables ṽt = R1/2vt and used the
calculation, Etr [Rvt ⊗ vt] = tr [R]σ2

u.

Bounding state cost Now let Q0 := Q+KHRK, we have that,

T∑
t=1

〈
xt, (Q+KHRK)xt

〉
=

T∑
t=1

‖Q1/2
0 xt‖2 = ‖x̃‖2,

where x̃ is defined as, z0 :=
[
Q

1/2
0 x1 . . .Q1/2

0 xT

]H
. Since all the xt are Gaussian, x̃t is also Gaussian, albeit

in a different Hilbert space. Applying Hanson-Wright, we get that with probability 1− δ/2,

‖x̃‖2 ≤ 7 log+(2/δ)Etr [x̃⊗ x̃] .

Bounding expectation Letting Acl := A? + B?K we have that by definition of the dynamical system,
for j ≥ 0,

x1+j = Ajclx1 +

j∑
k=1

Ak−1
cl (B?v1+j−k + w1+j−k).

Therefore,
E [x1+j ⊗ x1+j ] � AjclE [x1 ⊗ x1]

(
A H

cl

)j
+ dlyap

(
AH

cl, Σw +B?B
H
? σ

2
u

)
.
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Using this, we can upper bound Etr [x̃⊗ x̃] as follows,

Etr [x̃⊗ x̃] =

T∑
t=1

Etr [Q0xt ⊗ xt]

≤ tr

Q0

∞∑
j=0

AjclE [x1 ⊗ x1]
(
A H

cl

)j+ T tr
[
Q0dlyap

(
AH

cl, Σw +B?B
H
? σ

2
u

)]
(G.2)

≤ Bztr [P∞(K;A?, B?)] + T tr
[
Q0dlyap

(
(A? +B?K)H, Σw +B?B

H
? σ

2
u

)]
. (G.3)

The final inequality is justified by the following series of manipulations,

tr

Q0

∞∑
j=0

AjclE [x1 ⊗ x1]
(
A H

cl

)j ≤ ‖E [x1 ⊗ x1]‖op tr

 ∞∑
j=0

(
A H

cl

)j
(Q+KHPK)Ajcl


= ‖E [x1 ⊗ x1]‖op tr [P∞(K;A?, B?)] .

Wrapping up Combining our results so far, we have that with probability 1 − δ the regret as expressed
in Eq. (G.1) is less than or equal to,

7 log+(2/δ)
(
T
(
σ2
utr [R] + tr

[
Q0dlyap

(
AH

cl, Σw +B?B
H
? σ

2
u

)])
+Bztr [P∞(K;A?, B?)]

)
− TJ?.

G.1 Proof of Corollary 3.1
Proof. The proof of this proposition consists of a simple application of Lemma G.1 and then bounding
the relevant terms to show that the regret is O(Tinit). Recall that WarmStart chooses inputs according to
ut = Kinitxt + vt. Furthermore, the initial state is exactly 0 so Bz = 0 in the statement of the lemma.
Therefore, with probability 1− δ, for Acl = A? +B?Kinit, the regret is smaller than:

7Tinit log+(2/δ)
(
σ2
utr [R] + tr

[
(Q+KH

initRKinit)dlyap
(
AH

cl, Σw +B?B
H
? σ

2
u

)])
− TinitJ?.

We note that tr
[
(Q+KH

initRKinit)dlyap
(
AH

cl, Σw +B?B
H
? σ

2
u

)]
≤

∥∥Q+KH
initRKinit

∥∥
op

tr
[
Σ?(Kinit, σ

2
u)
]
.

Since J? ≥ 0, this expression above is then upper bounded by,

7 log+(2/δ)
(
σ2
utr [R] +

∥∥Q+KH
initRKinit

∥∥
op

tr
[
Σ?(Kinit, σ

2
u)
])
Tinit.

67



G.2 Proof of Theorem 3.1
Proof. By definition of the algorithm in Appendix F, we can split up the regret into two separate phases:
an initial explore phase and then a commit phase.

RegretTexp
(explore,x1) + RegretT−Texp

(
commit,xTexp+1

)
.

The explore phase corresponds to the regret incurred during the first part of the algorithm wherein inputs
are chosen according to ut = K0xt+vt for Texp many iterations. The commit algorithm then chooses inputs
ut = K̂xt for the remaining T − Texp time steps.

Exploration regret We now upper bound the regret in each phase individually. For the exploration phase,
we can apply Lemma G.1, to get that with probability 1− δ/4, for Acl = A?+B?K0 and Q0 = Q+KH

0 RK0,
the regret experienced in this phase bounded by,

7 log+(8/δ)Texp
(
σ2
utr [R] + tr

[
Q0dlyap

(
AH

cl, Σw +B?B
H
? σ

2
u

)])
.

Since x1 ∼ N (0,Σx,0) is drawn from the same exploration distribution, the remaining constant term from
Lemma G.1 vanishes since there is no need to consider the change in distribution. As in the proof of the
WarmStart regret bound, we observe that,

tr
[
(Q+KH

0 RK0)dlyap
(
AH

cl, Σw +B?B
H
? σ

2
u

)]
≤
∥∥Q+KH

0 RK0

∥∥
op

tr [Σx,0] .

Given that the initial estimates satisfy Condition 2.1, by Lemma D.7 and Lemma C.8 we have that

‖K0‖2op ≤ ‖P∞(A0, B0)‖op . ‖P?‖op .

Hence, ∥∥Q+KH
0 RK0

∥∥
op
≤ ‖Q‖op + ‖K0‖2op ‖R‖op .M2

? .

Therefore, with probability 1− δ/4,

RegretTexp
(explore,x1) . log+(1/δ)Texp

(
σ2
utr [R] +M2

? tr [Σx,0]
)
. (G.4)

Bounding regret during commit phase Moving on to bounding regret during the second phase, our
first observation is that due to the projection step, the system estimates Â, B̂ lie inside an operator norm ball
of radius .5Cstable around the warm start estimates (A0, B0). Since the warm start estimates are themselves
.5Cstable close to (A?, B?), we conclude that (Â, B̂) satisfy Condition 2.1 and by Lemma C.8, K̂ = K∞(Â, B̂)

is guaranteed to be stabilizing for the true system (A?, B?). Furthermore, ‖P0‖op .M? and ‖P̂‖op .M?.
Next, we use a similar regret analysis as before and apply Lemma G.1, to conclude that with probability

1− δ/4, RegretT−Texp

(
commit,xTexp+1

)
is upper bounded by,

7T log+(8/δ)
(
tr
[
Q0dlyap

(
AH

cl, Σw

)]
− J?

)
+ 7 log+(8/δ) ‖Σx,0‖op tr [P∞(K0;A?, B?)] , (G.5)

where Acl = A? +B?K̂ and Q0 = Q+ K̂HRK̂. Next, since

tr
[
Q0dlyap

(
AH

cl, Σw

)]
= tr

[
(Q+ K̂HRK̂)Σ?(K̂)

]
= J (K̂),

we can rewrite Eq. (G.5) as,

7T log+(8/δ)(J(K̂)− J(K?)) + 7 log+(8/δ) ‖Σx,0‖op tr [P∞(K0;A?, B?)] .

Using Theorem 2.1,

J (K̂)− J (K?) .M36
? · L exp( 1

50

√
L) · ε2, where L := log (e+

2e‖Â−A?‖2optr[Σx,0]

ε2 ) ,

where ε = max
{∥∥∥(Â−A?)Σ1/2

x,0

∥∥∥
HS
,
∥∥∥B̂ −B?∥∥∥

HS

}
and σ2

u has been set to 1 as in the description of the
OnlineCE in Appendix F. To finish the proof, we now plug in our estimation rates from Part II to upper
bound ε and optimize over Texp.
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Plugging in estimation rates Using Proposition E.2, for Texp & du log
(
du
δ

)
, with probability 1− δ/4,∥∥∥B? − B̂∥∥∥2

HS
.
dutr [Σx,0] log

(
du
δ

)
σ2
uTexp

.

Incorporating the analogous proposition for A?, Proposition E.3, for

Texp & dλ log+

(
tr [Σx,0]

δλ

)
+ ‖P?‖op log+

(
‖P?‖2op

λ

∥∥B?BH
? σ

2
u + Σw

∥∥
op

)
,

with probability 1− δ/4∥∥∥(Âcl −Acl?)Σ
1/2
x,0

∥∥∥2

HS
. λ ‖Acl?‖

2
HS + ·Wtr

Texp
(dλ + Ctail,λ) log+

(
tr [Σx,0]

δλ

)
.

Setting λ = c Wtr

Texp‖Acl?‖
2
HS

for some universal constant c, the second term dominates the first and we get that,

∥∥∥(Âcl −Acl?)Σ
1/2
x,0

∥∥∥2

HS
.
Wtr

Texp
(dλ + Ctail,λ) log

(
tr [Σx,0]Texp ‖Acl?‖

2
HS

Wtrδ

)
.

From our definition of ε, we see that it is upper bounded by, the sum of the errors in A? and B? and hence,

ε2 .
dutr [Σx,0] +Wtr(dλ + Ctail,λ)

Texp
log

(
dutr [Σx,0] ‖Acl?‖

2
HS T

Wtrδ2

)
,

where above we also upper bounded Texp ≤ T .

Wrapping up All that remains is to optimize over Texp to balance the regret between both phases. In
particular, if we choose,

Texp =

√
T ·M36

? (dutr [Σx,0] +Wtr(dλ + Ctail,λ))

σ2
utr [R] +M2

? tr [Σx,0]
,

we get that with probability 1− δ, up to constants and log factors, the total regret is bounded by:√
(tr [R] +M2

? tr [Σx,0])M36
? (dutr [Σx,0] +Wtr(dλ + Ctail,λ))T · ϕ(T )

where ϕ(T ) = exp

(√
log
(

1 +
√
T tr [Σx,0]

))
. Simplifying the bound a bit further, we know that tr [R] ≤ ‖R‖op du.

And, by Lemma D.8,

tr [Σx,0] = tr
[
dlyap

(
(A? +B?K0)H, B?B

H
? σ

2
u + Σw

)]
≤
∥∥dlyap ((A? +B?K0)H, Q+KH

0 RK0

)∥∥
op

tr
[
B?B

H
? σ

2
u + Σw

]
≤ M?(M? + tr [Σw])

.M2
? tr [Σw] .

Hence, if we let dmax := max{tr [Σw] ,Wtr, du} we get that:

tr [R] +M2
? tr [Σx,0] .M4

?dmax and dutr [Σx,0] +Wtr(dλ + Ctail,λ) .M2
?d

2
max.

Therefore, we can upper bound the total regret of OnlineCE is with high probabilityO?
(√

M42
? d2

max(dλ + Ctail,λ)T
)
.
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G.3 Proof of Theorem 3.2
Proof. The proof of the theorem follows by bounding dλ and Ctail,λ based on the decay rates of Σw. We
overload notation and define dλ(Λ) for Λ � 0 to be the number of eigenvalues of Λ that are larger than λ.
Likewise, we define Ctail,λ(Λ) to be the sum of the eigenvalues of Λ that are smaller than λ, divided by λ.
The proof follows by applying two inequalities which follow from Lemma D.15. In particular, since B? is
finite rank and by the warm start property, the following are true for n & n0 := ‖P?‖op log

(
‖P?‖2opWtr/λ

)
,

dλ(Σx,0) ≤ n0dλ/(2‖P?‖2op)(Σw) + du ‖Σx,0‖op

Ctail,λ(Σx,0) ≤ 1

λ
n0 ‖P?‖2op

 ∞∑
j ≥ dae

σj(Σw) + λ

+ du ‖Σx,0‖op ,

where a = dλ (Σw) /n0. We analyze each case separately.

Polynomial decay If σj(Σw) = j−α, then a short calculation shows that dλ(Σw) = bλ−1/αc. Therefore,

dλ(Σx,0) ≤ n0

(
λ

‖P?‖2op

)−1/α

+ du ‖Σx,0‖op .

Since λ = c · Wtr

T‖Acl?‖
2
HS

for some constant c, dλ(Σx,0) scales no faster than n0T
1/α + du ‖Σx,0‖op. For Ctail,λ,

we have that ∑
j ≥ dλ−1/α

n0
e

j−α ≤
∫
λ−1/α

n0

j−α =
1

α− 1
λ(α−1)/αnα−1

0 .

Therefore, after dividing by λ, we get that Ctail,λ scales as n0 ‖P?‖2op T
1/α ‖Acl?‖

2
HS + du ‖Σx,0‖op. Since

‖Σx,0‖op .M3
? , we get that dλ + Ctail,λ are Õ(M4

?T
1/α).

Exponential decay Moving on to the case where the eigenvalues of Σw decay exponentially fast, a similar
calculation to the previous one shows that dλ(Σw) = bα−1 log(1/λ)c. Therefore,

dλ(Σx,0) .
n0

α
log

(
‖P?‖2op

λ

)
+ du ‖Σx,0‖op .

Hence dλ(Σx,0) scales as Õ(n0 +duM
3
? ). For the tail term, we observe that

∑∞
j=1 exp(−αj) = 1/(exp(α)−1).

This term therefore scales no faster than n0 ‖P?‖2op + du ‖Σx,0‖op. This shows that dλ + Ctail,λ are Õ(M3
?du).

Finite dimension In finite dimension with full rank noise, it is clear that for large enough T , dλ(Σx,0)
is bounded by dx and that Ctail,λ is equal to 0. Furthermore, using now standard analysis such as the ones
present in Simchowitz et al. [2018], it follows that ‖Â−A?‖HS goes to 0 at the same rate as ‖(Â−A?)Σ1/2

x,0‖HS.
Therefore, the terms depending on L in Theorem 3.1 become O(1).

G.4 Combining WarmStart and OnlineCE
In the analysis of OnlineCE (Theorem 3.1), we assumed that x1 ∼ N (0,Σx,0) was distributed according to
the steady state distribution of induced by the exploration policy. This assumption can be relaxed, since any
initial distribution over x1 will converge exponentially quickly to the steady steady in Wasserstein distance
due to a mixing argument (variants of this argument are ubiquitous in the analysis of online LQR, and for
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brevity we omit them. The curious reader can see appendices of Dean et al. [2018], Abeille and Lazaric [2020]
for examples. The mixing time will be a polynomial in ‖P∞(K0;A?, B?)‖op, which we show is . ‖P?‖op.

Hence to stitch the two regret bounds together, we simply run the initial phase to garner estimates
(A0, B0), begin to play controllerK0 = K∞(A0, B0,), allow a constant-length burnin for the state to converge
to the distribution of Σx,0, and then execute OnlineCE. Again, for the sake of brevity, we omit the details.

As a final remark, when stitching both algorithms together, one could in principle omit synthesizing
the controller K0 as outlined in the first step of the OnlineCE algorithm and run the entire exploration
phase just using Kinit. Doing so would only increase the constants M? since they would now depend on
‖P∞(Kinit;A?, B?)‖op. The asymptotics of the algorithm would remain unchanged. However, the projection
step onto a safe set around (A0, B0) is crucial for our analysis in order to ensure that the certainty equivalent
controller is stabilizing for the true system.

H Lower Bound
In this section, we state and prove lower bounds demonstrating the necessity of finite input dimension; these
results follow from applications of the lower bound due to Simchowitz and Foster [2020]. Our first bound is
as follows:

Theorem 1.1. Let c, c′ > 0 denote universal constants. Fix any trace bound γ ≥ 1 and input dimension
du ∈ N with du ≥

√
log(1 + γ). Consider the set U of instances with state dimension dx = bγc defined by

U := {(A,B) := ‖A− 1

2
I‖HS ≤

1

4
, ‖B‖HS ≤

1

4
}.

Then, the LQR regret with cost matrices Q = Idx , R = Idu , and noise ‖Σw‖op = 1, tr[Σw] ≤ γ satisfies

min
alg

max
(A,B)∈U

EA,B [RegretT (alg)] ≥ c ·

{
T T ∈ [c′γ log(1 + γ), γd2

u]√
γd2

u · T T ≥ γd2
u

.

We prove the bound in the following subsection. The bound considers instances that lie in a finite
dimensional Hilbert space of dimension dx = bγc. In particular, all the instances in the packing are operator
norm bounded, Hilbert-Schmidt, and in fact finite rank. The difficulty introduced by high-dimensional inputs
is one of a needle in the haystack: to find the optimal control policy, the learner needs to learn to align their
controller with the true B? matrix, and doing so incurs dependence on ambient dimension. In essence, this
is because the learner is free to pick any direction she chooses, so the complexity of the problem behaves
more like, say, a linear bandit problem in dimension du than a statistical learning problem which admits a
more refined notion of intrinsic dimension.

In Appendix H.2, we state and sketch the proof of a lower bound that holds even if all the instances are
controllable, demonstrating that little can be done to remove the finite dimensionality requirement of inputs.

H.1 Proof of Theorem 1.1
Throughout, we let ci, i > 1 denote universal constants. Recall that γ ≥ 1 is the trace bound, and dx = bγc
is the state dimension. We select Σw = Idx , which has trace tr [Σw] = dx ≤ γ.

Our lower bound follows from specializing the lower bound due to Simchowitz and Foster [2020]. To
begin, we state a variant of their main lower bound.

Proposition H.1 (Variant of Theorem 1 in Simchowitz and Foster [2020]). Let c1, c2, p > 0 denote universal
constants. Consider a finite dimensional LQR system (A?, B?), with finite input dimension du, state dimen-
sion dx, cost matrices R,Q � I, optimal controller K?, value function P?, and noise Σw = Idx . Suppose
ν := σmin(A? +B?K?)/‖R+B>? P?B?‖op > 0. Then, defining the convex set,

B := {(A,B) : ‖A−A?‖2HS + ‖B −B?‖2HS} ≤
1

16
, (H.1)
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it holds that,

min
alg

max
(A,B)∈B

EA,B [RegretT (alg)] ≥ c2
√
dxd2

uT ·
min{1, ν2}
‖P?‖2op

,

provided that T ≥ c1‖P?‖pop min{d2
udx,

dx max{1,ν4}max{1,‖B?‖4op}
d2u

, dx log(1 + dx‖P?‖op)}.

Proof. Proposition H.1 is obtained by specializing the proof of the lower bound from Theorem 1 in Simchowitz
and Foster [2020] to m = du, and noting that the instances in the construction of the lower bound lie in an
ball which satisfies the conditions of Lemma 4.1 their work (note that, by enlarging the constant term in the
unspecified polynomial in that lemma, we can ensure that the constant is sufficiently small).

First, for simplicity, we specialize Proposition H.1 with a concrete instance. Take A? = 1
2I, R = Q = I

and let B? = 0.

Lemma H.2. Let P? denote the value function for the instance (A?, B?), K? the optimal controller, and
Acl? := A? +B?K? the optimal closed loop systems. Then, P? = 4

3I, K? = 0, and Acl? = A? = 1
2I.

Proof. Since B? = 0, Acl? = A?. Moreover, zero B? means that the control inputs do not affect the system.
Hence, optimal performance is optimized by selecting no control input, so as to minimize input cost; that is,
K? = 0. Hence, the value function is dlyap (Acl? , Q) =

∑
j≥0( 1

2I)jI( 1
2 )j = I ·

∑
j≥0 4−j = 1

1−1/4I = 4
3I.

Invoking Lemma H.4, and using d2
u ≥ log(1+γ) ≥ log(1+dx) to simplify terms, we find that for universal

(i.e. dimension independent) constants c3, c4, the instances centered in B := {(A,B) : ‖A−A?‖2HS+‖B‖2HS} ≤
1
4} satisfy

min
alg

max
(A,B)∈B

EA,B [RegretT (alg)] ≥ c3
√
dxd2

u · T , ∀T ≥ c4d2
udx. (H.2)

To conclude, we address the case where T ≤ c4d2
udx. For T ≥ 4c4dx log(1 + dx), consider a smaller input

dimension d :=
√
bT/c4dxc. Let B̃d := {(A, B̃) ∈ Rd2x × Rdxd : ‖A − A?‖2HS + ‖B̃‖2HS} ≤ 1

4} denote the
analogous set of local instances to the above construction with input dimension d. From the choice of d and
condition on T , we have d2 ≥ log(1+dx) and T ≥ c4d2du, so the above lower bound established in dimension
du entails that, for another universal constant c5,

min
ãlg

max
(A,B̃)∈B̃d

EA,B̃ [RegretT (ãlg)] ≥ c3
√
dxd2 · T ≥ c5T,

where the last inequality follows from the choice of d :=
√
bT/c4dxc. Stated otherwise, it holds that for all

T ∈ [4c4dx log(1 + dx), c4dxd
2
u],

∃ d ∈ [1, du] such that min
ãlg

max
(A,B̃)∈B̃d

EA,B̃ [RegretT (ãlg)] ≥ c5T.

We now embed the above instances of input dimension d into input dimension du via the following lemma.

Lemma H.3. Fix a state dimension dx, and an input dimension d ≤ du. Given a matrix B̃ ∈ Rdx×d,
let ι(B̃) denote its canonical embedding into Rdx×du by padding the remaining du − d columns with zeros.
Overloading notation, given a subset of Ũ ⊂ Rd2x × Rdxdu , define its embedding

ι(Ũ) := {(A,B) : ∃(A, B̃) ∈ Ũ with B = ι(B̃)}.

Then,

inf
alg

max
(A,B)∈U

EA,B,[RegretT (alg)] ≥ inf
ãlg

max
(A,B̃)∈Ũ

EA,B̃ [RegretT (ãlg)],

where on both sides, the noise covariance is Σw = I and the state cost Q = Idx . On the left hand side, the
input cost is Idu , and on the right, R = Id.
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Thus, letting B̄ :=
⋃
d∈[1,du] ι(B̃d) denote the union of all the embeddings of the sets B̄, it holds that for

all T ∈ [4c4dx log(1 + dx), c4dxd
2
u],

min
alg

max
((A,B)∈B̄

EA,B [RegretT (alg)] ≥ c5T.

Moreover, since B̄ ⊃ B, incorporating Eq. (H.2) we conclude that,

min
alg

max
((A,B)∈B̄

EA,B [RegretT (alg)] ≥

{
c5T T ∈ [4c4dx log(1 + dx), c4dxd

2
u]

c3
√
dxd2

u · T T ≥ c4dxd2
u

.

Replacing dx with bγc, absorbing constants, and simplifying, we find that for universal constants c6, c7:

min
alg

max
((A,B)∈B̄

EA,B [RegretT (alg)] ≥ c6

{
T T ∈ [c7γ log(1 + γ), γd2

u]√
γd2

u · T T ≥ γd2
u

.

Finally, we observe that

B̄ ⊂ U := {(A,B) := ‖A− 1

2
I‖HS ≤

1

4
, ‖B‖HS ≤

1

4
}.

Proof of Lemma H.3. We begin with the following claim.

Claim H.1. Let alg be an algorithm which interacts with instances (A,B) ∈ U . Then, there is an algorithm
ãlg which interacts with instances (A, B̃) ∈ Ũ for which,

∀A, B̃,B = ι(B̃), EA,B̃,ãlg[
T∑
t=1

‖xt‖2 + ‖ut‖2] ≤ EA,B,alg[
T∑
t=1

‖xt‖2 + ‖ut‖2],

with equality if alg always plays inputs ut whose last du − d coordinates are 0.

Proof. Given an input ut ∈ Rdu , write ut = (ũt, ůt) as the decomposition of ut into its first d, and last
du − d coordinates. Observe that, for instances (A,B) ∈ U , the last du − d coordinates ůt do not affect the
dynamics. Hence, the iterates (xt, ũt) produced by alg on (A,B) in U coincide with the iterates obtained by
the algorithm ãlg which, given an instances (A, B̃) ∈ Ũ proceeds as follows:

• ãlg maintains “internal” inputs ūt corresponding to the inputs that would have been selected by the
original algorithm alg with input dimension du.

• For each t, ãlg feeds alg the past iterates x1:t, ū1:t−1, and receive internal input ūt.

• Then, ãlg plays the input ut ∈ Rd obtained by projecting ūt onto its first d coordinates.

Given an instance (A, B̃) ∈ Ũ , and its embedding (A,B) = (A, ι(B̃)), the iterates (xt, ũt) produced by alg
on (A,B) have the same distribution as the iterates (xt,ut) ∈ Rdx × Rd produced by ãlg. Hence, for all
A, B̃,B = ι(B̃), it holds that

EA,B̃,ãlg[
T∑
t=1

‖xt‖2 + ‖ut‖2] = EA,B,alg[
T∑
t=1

‖xt‖2 + ‖ũt‖2]

≤ EA,B,alg[
T∑
t=1

‖xt‖2 + ‖ut‖2],

with equality if remaining du − d coordinates of the inputs prescribed by alg are identically 0 for all t.
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Arguing along the lines of Claim H.1, we can also see that the optimal infinite horizon control policy for
(A,B) ∈ U also only selects inputs supported on the first d coordinates, and thus

J?A,B = J?
A,B̃

, ∀(A, B̃) ∈ U , B = ι(B̃).

Consequently,

max
(A,B)∈U

EA,B [RegretT (alg)] = max
(A,B)∈U

EA,B,alg[
T∑
t=1

‖xt‖2 + ‖ut‖2]− TJ?A,B

≥ max
(A,B)∈U

EA,B̃,ãlg[
T∑
t=1

‖xt‖2 + ‖ut‖2]− TJ?
A,B̃

, where B = ι(B̃)

≥ max
(A,B)∈Ũ

EA,B̃ [RegretT (ãlg)],

as needed.

H.2 Lower Bound that Maintains Controllability
In this section, we state a lower bound that maintains controllability, in order to demonstrate how con-
trollability does not ameliorate the requirement that the input dimension du be bounded. To capture this
scenario, set

dx ≤ du, A? =
1

2
I, B? =

[
Idx 0dx

]
. (H.3)

Theorem H.1. Let c, c′ be universal constants. Let c, c′ > 0 denote universal constants. Fix any trace
bound γ ≥ 1 and input dimension du ∈ N with du ≥ γ. Consider the set U of instances with state dimension
dx = bγc defined by

U :=

{
(A,B) := ‖A− 1

2
I‖HS ≤

1

4
, ‖B −B?‖HS ≤

1

4

}
, where B? is in Eq. (H.3).

Then, the LQR regret with cost matrices Q = Idx , R = Idu , ‖Σw‖op = 1, and tr[Σw] ≤ γ, satisfies,

min
alg

max
(A,B)∈U

EA,B [RegretT (alg)] ≥
√
γd2

u · T ,

for all T ≥ c′γd2
u. In particular, if T ∝ γd2

u, the minimax regret on U is linear in T .

Note that, for all instances (A,B) ∈ U , not only is A stable (‖A‖op ≤ 3/4), but the column space has
rank dx, and smallest singular value at least 3/4 (since the first dx columns of B? are the identity, and all
matrices are in U are a bounded perturbation thereof). Hence, the systems (A,B) ∈ U are all one-step
controllable. Nevertheless, the regret still scales with d2

u.
The proof of Theorem H.1 is nearly the same as that of Theorem 1.1; the main difference is verifying the

bounds on P? and σmin required to instantiate Proposition H.1.

Lemma H.4. Regardless of the choice of dimension, we have that ‖P?‖op ≤ 4/3, and σmin(A? + B?K?) ≥
1/5.

Proof of Lemma H.4. For simplicity, we drop the stars in the subscript. Let us characterize the optimal
solution. Define F(P ) := A>PA− (A>PB)(R + B>PB)−1(B>PA) +Q− P . Let J denote the projection
onto the subspace spanned by the columns of B, and J⊥ = I − J . We guess a solution of the form

P = p1J + p2J⊥.
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Next, we show that such a P solves F(P ) = 0 when p1, p2 are appropriately chosen. With this matrix,
R +B>PB = R + p1Idu = (1 + p)Idu , so B(R +B>PB)−1B> = (1 + p1)J , where J is the projection onto
the subspace spanned by the columns of B. Let J⊥ = I − J . Note that in the overactuated case, J is the
identity. Hence,

F(P ) =
P

4
− p2

1

4(1 + p1)
J − P + I

= (1 +
p1

4
− p1 −

p2
1

4(1 + p1)
)J + (1 +

p2

4
− p2)J⊥

= (1− 3p1

4
− p2

1

4(1 + p1)
)J + (1 +

−3p2

4
)J⊥.

To solve this equation, set p2 = 4
3 , and set

1− 3p1

4
− p2

1

4(1 + p1)
= 0

− 4(1 + p1) + 3p1(1 + p1) + p2
1 = 0

4p2
1 − p1 − 4 = 0.

Taking the positive solution of the quadratic equation, p1 = 1+
√

65
8 ≤ 4/3.

Now, the optimal control policy is K = −(R + B>PB)−1B>PA = 1
2 ·

p1
1+p1

B> (using the form of B,

R = I, and P ), yielding BK = − 1
2 ·(

p1
1+p2

)J . Hence, A+BK = 1
2

(
J⊥ + 1

1+p2
J
)
, and thus, σmin(A+BK) ≥

1
2(1+p2) ≥ 1/5.
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